249 resultados para pseudomonas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The barrier imposed by lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria presents a significant challenge in treatment of these organisms with otherwise effective hydrophobic antibiotics. The absence of L-glycero-D-manno-heptose in the LPS molecule is associated with a dramatically increased bacterial susceptibility to hydrophobic antibiotics and thus enzymes in the ADP-heptose biosynthesis pathway are of significant interest. GmhA catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-manno-heptose 7-phosphate, the first committed step in the formation of ADP-heptose. Here we report structures of GmhA from Escherichia coli and Pseudomonas aeruginosa in apo, substrate, and product-bound forms, which together suggest that GmhA adopts two distinct conformations during isomerization through reorganization of quaternary structure. Biochemical characterization of GmhA mutants, combined with in vivo analysis of LPS biosynthesis and novobiocin susceptibility, identifies key catalytic residues. We postulate GmhA acts through an enediol-intermediate isomerase mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic lung infection by opportunistic pathogens, such as Pseudomonas aeruginosa and members of the Burkholderia cepacia complex, is a major cause of morbidity and mortality in patients with cystic fibrosis. Outer membrane proteins (OMPs) of gram-negative bacteria are promising vaccine antigen candidates. In this study, we evaluated the immunogenicity, protection, and cross-protection conferred by intranasal vaccination of mice with OMPs from B. multivorans plus the mucosal adjuvant adamantylamide dipeptide (AdDP). Robust mucosal and systemic immune responses were stimulated by vaccination of naive animals with OMPs from B. multivorans and B. cenocepacia plus AdDP. Using a mouse model of chronic pulmonary infection, we observed enhanced clearance of B. multivorans from the lungs of vaccinated animals, which correlated with OMP-specific secretory immunoglobulin A responses. Furthermore, OMP-immunized mice showed rapid resolution of the pulmonary infection with virtually no lung pathology after bacterial challenge with B. multivorans. In addition, we demonstrated that administration of B. multivorans OMP vaccine conferred protection against B. cenocepacia challenge in this mouse infection model, suggesting that OMPs provide cross-protection against the B. cepacia complex. Therefore, we concluded that mucosal immunity to B. multivorans elicited by intranasal vaccination with OMPs plus AdDP could prevent early steps of colonization and infection with B. multivorans and also ameliorate lung tissue damage, while eliciting cross-protection against B. cenocepacia. These results support the notion that therapies leading to increased mucosal immunity in the airways may help patients with cystic fibrosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Campylobacter jejuni has a general N-linked protein glycosylation system that can be functionally transferred to Escherichia coli. In this study, we engineered E. coli cells in a way that two different pathways, protein N-glycosylation and lipopolysaccharide (LPS) biosynthesis, converge at the step in which PglB, the key enzyme of the C. jejuni N-glycosylation system, transfers O polysaccharide from a lipid carrier (undecaprenyl pyrophosphate) to an acceptor protein. PglB was the only protein of the bacterial N-glycosylation machinery both necessary and sufficient for the transfer. The relaxed specificity of the PglB oligosaccharyltransferase toward the glycan structure was exploited to create novel N-glycan structures containing two distinct E. coli or Pseudomonas aeruginosa O antigens. PglB-mediated transfer of polysaccharides might be valuable for in vivo production of O polysaccharides-protein conjugates for use as antibacterial vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most common pathways for the export of O-specific lipopolysaccharide (LPS) across the plasma membrane requires the participation of the Wzx protein. Wzx belongs to a family of integral membrane proteins that share little conservation in their primary amino acid sequence, making it difficult to delineate functional domains. This paper reports the cloning and expression in Escherichia coli K-12 of various Wzx homologues from different bacteria as FLAG epitope-tagged protein fusions. A reconstitution system for O16 LPS synthesis was used to assess the ability of each Wzx protein to complement an E. coli K-12 Deltawzx mutant. The results demonstrate that Wzx proteins from O-antigen systems that use N-acetylglucosamine or N-acetylgalactosamine for the initiation of the biosynthesis of the O repeat can fully complement the formation of O16 LPS. Partial complementation was seen with Wzx from Pseudomonas aeruginosa, a system that uses N-acetylfucosamine in the initiation reaction. In contrast, there was negligible complementation with the Wzx protein from Salmonella enterica, a system in which galactose is the initiating sugar. These results support a model whereby the first sugar of the O repeat can be recognized by the O-antigen translocation machinery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The O7-specific lipopolysaccharide (LPS) in strains of Escherichia coli consists of a repeating unit made of galactose, mannose, rhamnose, 4-acetamido-2,6-dideoxyglucose, and N-acetylglucosamine. We have recently cloned and characterized genetically the O7-specific LPS biosynthesis region (rfbEcO7) of the E. coli O7:K1 strain VW187 (C. L. Marolda, J. Welsh, L. Dafoe, and M. A. Valvano, J. Bacteriol. 172:3590-3599, 1990). In this study, we localized the gnd gene encoding gluconate-6-phosphate dehydrogenase at one end of the rfbEcO7 gene cluster and sequenced that end of the cluster. Three open reading frames (ORF) encoding polypeptides of 275, 464, and 453 amino acids were identified upstream of gndEcO7, all transcribed toward the gnd gene. ORF275 had 45% similarity at the protein level with ORF16.5, which occupies a similar position in the Salmonella enterica LT2 rfb region, and presumably encodes a nucleotide sugar transferase. The polypeptides encoded by ORFs 464 and 453 were expressed under the control of the ptac promoter and visualized in Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gels and by maxicell analysis. ORF464 expressed GDP-mannose pyrophosphorylase and ORF453 encoded a phosphomannomutase, the enzymes for the biosynthesis pathway of GDP-mannose, one of the nucleotide sugar precursors for the formation of the O7 repeating unit. They were designated rfbMEcO7 and rfbKEcO7, respectively. The RfbMEcO7 polypeptide was homologous to the corresponding protein in S. enterica LT2, XanB of Xanthomonas campestris, and AlgA of Pseudomonas aeruginosa, all GDP-mannose pyrophosphorylases. RfbKEcO7 was very similar to CpsG of S. enterica LT2, an enzyme presumably involved in the biosynthesis of the capsular polysaccharide colanic acid, but quite different from the corresponding RfbK protein of S. enterica LT2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of our study was to discover the health status and healthcare utilisation associated with pulmonary exacerbations in cystic fibrosis (CF) and chronic Pseudomonas aeruginosa infection.

Patients with CF from five UK CF centres attended two visits, 8–12 weeks apart. They were classified at visit 1 as being in one of the three health states: no current pulmonary exacerbation; “mild” (no hospitalisation) pulmonary exacerbation; and “severe” (hospitalisation) pulmonary exacerbation. All patients completed the Cystic Fibrosis Questionnaire-Revised (CFQ-R) and EuroQol (EQ-5D) and a clinical form, and forced expiratory volume in 1 s (FEV1) was measured at visits 1 and 2. Annual healthcare utilisation data were collected.

94 patients of mean±sd age 28.5±8.2 yrs and FEV1 58.7±26.8% were recruited. 60 patients had no pulmonary exacerbation, 15 had a mild and 19 had a severe pulmonary exacerbation at visit 1. EQ-5D and CFQ-R data showed that the worse the exacerbation, the poorer the health-related quality of life (HRQoL). There were strong relationships between the CFQ-R and EQ-5D domain scores. The mean rate of pulmonary exacerbations per patient per year was 3.6 (1.5 in hospital and 2.2 at home). The mean length of stay per hospital pulmonary exacerbation was 9 days.

As exacerbation status worsens, patients experience worse HRQoL. There is a significant healthcare burden associated with treatment of pulmonary exacerbation and long-term prophylaxis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a need for new antibiotics or combination of antibiotics that possess activity against increasingly resistant cystic fibrosis (CF) respiratory pathogens such as Pseudomonas aeruginosa and MRSA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cleavage of the carbon-phosphorus bond of the xenobiotic phosphonoacetate by phosphonoacetate hydrolase: represents a novel route for the microbial metabolism of organophosphonates, and is unique in that it: is substrate-inducible and its expression is independent of the phosphate status of the cell. The enzyme has previously only been demonstrated in cell extracts of Pseudomonas fluorescens 23F. Phosphonoacetate hydrolase activity is now reported in extracts of environmental Curtobacterium sp. and Pseudomonas sp. isolates capable of the phosphate-insensitive mineralization of phosphonoacetate as the sole source of carbon, energy and phosphorus at concentrations up to 40 mmol l(-1) and 100 mmol l(-1), respectively. The enzymes in both strains were similarly inducible by phosphonoacetate and had a unique specificity ibr this substrate. However, they differed significantly from each other, and from the previously described Ps. fluorescens 23F enzyme, in respect of their apparent molecular masses, temperature optima, thermostability, sensitivity to inhibition by chelating agents and by structural analogues of phosphonoacetate, and in their affinities for the substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is characterized by defective mucociliary clearance and chronic airway infection by a complex microbiota. Infection, persistent inflammation and periodic episodes of acute pulmonary exacerbation contribute to an irreversible decline in CF lung function. While the factors leading to acute exacerbations are poorly understood, antibiotic treatment can temporarily resolve pulmonary symptoms and partially restore lung function. Previous studies indicated that exacerbations may be associated with changes in microbial densities and the acquisition of new microbial species. Given the complexity of the CF microbiota, we applied massively parallel pyrosequencing to identify changes in airway microbial community structure in 23 adult CF patients during acute pulmonary exacerbation, after antibiotic treatment and during periods of stable disease. Over 350,000 sequences were generated, representing nearly 170 distinct microbial taxa. Approximately 60% of sequences obtained were from the recognized CF pathogens Pseudomonas and Burkholderia, which were detected in largely non-overlapping patient subsets. In contrast, other taxa including Prevotella, Streptococcus, Rothia and Veillonella were abundant in nearly all patient samples. Although antibiotic treatment was associated with a small decrease in species richness, there was minimal change in overall microbial community structure. Furthermore, microbial community composition was highly similar in patients during an exacerbation and when clinically stable, suggesting that exacerbations may represent intrapulmonary spread of infection rather than a change in microbial community composition. Mouthwash samples, obtained from a subset of patients, showed a nearly identical distribution of taxa as expectorated sputum, indicating that aspiration may contribute to colonization of the lower airways. Finally, we observed a strong correlation between low species richness and poor lung function. Taken together, these results indicate that the adult CF lung microbiome is largely stable through periods of exacerbation and antibiotic treatment and that short-term compositional changes in the airway microbiota do not account for CF pulmonary exacerbations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhizosphere microorganisms play an important role in soil carbon flow, through turnover of root exudates, but there is little information on which organisms are actively involved or on the influence of environmental conditions on active communities. In this study, a (CO2)-C-13 pulse labelling field experiment was performed in an upland grassland soil, followed by RNA-stable isotope probing (SIP) analysis, to determine the effect of liming on the structure of the rhizosphere microbial community metabolizing root exudates. The lower limit of detection for SIP was determined in soil samples inoculated with a range of concentrations of C-13-labelled Pseudomonas fluorescens and was found to lie between 10(5) and 10(6) cells per gram of soil. The technique was capable of detecting microbial communities actively assimilating root exudates derived from recent photo-assimilate in the field. Denaturing gradient gel electrophoresis (DGGE) profiles of bacteria, archaea and fungi derived from fractions obtained from caesium trifluoroacetate (CsTFA) density gradient ultracentrifugation indicated that active communities in limed soils were more complex than those in unlimed soils and were more active in utilization of recently exuded C-13 compounds. In limed soils, the majority of the community detected by standard RNA-DGGE analysis appeared to be utilizing root exudates. In unlimed soils, DGGE profiles from C-12 and C-13 RNA fractions differed, suggesting that a proportion of the active community was utilizing other sources of organic carbon. These differences may reflect differences in the amount of root exudation under the different conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant-derived carbon is the substrate which drives the rate of microbial assimilation and turnover of nutrients, in particular N and P, within the rhizosphere. To develop a better understanding of rhizosphere dynamics, a tripartite reporter gene system has been developed. We used three lux-marked Pseudomonas fluorescens strains to report on soil (1) assimilable carbon, (2) N-status, and (3) P-status. In vivo studies using soil water, spiked with C, N and P to simulate rhizosphere conditions, showed that the tripartite reporter system can provide real-time assessment of carbon and nutrient status. Good quantitative agreement for bioluminescence output between reference material and soil water samples was found for the C and P reporters. With regard to soil nitrate, the minimum bioavailable concentration was found to be greater than that analytically detectable in soil water. This is the first time that bioavailable soil C, N and P have been quantified using a tripartite reporter gene system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flow of carbon from plant roots into soil supports a range of microbial processes and is therefore critical to ecosystem function and health. Pollution-induced stress, which influences rhizosphere C flow is of considerable potential importance, and therefore needs to be evaluated. This paper reports on a method, based on reporter gene technology, for quantifying pollutant effects on rhizosphere C flow. The method uses the lux-marked rhizobacterium Pseudomonas fluorescens, where bioluminescence output of this biosensor is directly correlated with the metabolic activity and reports on C flow in root exudate. Plantago lanceolata was treated with paraquat (representing a model pollutant stress) in a simple microcosm system. The lux-biosensor response correlated closely with C concentrations in the exudate and demonstrated that the pollutant stress increased the C flow from the plantago roots, 24 h after application of the herbicide. The lux-reporter system therefore potentially offers a technique for use in assessing the impact of pollutant stress on rhizosphere C flow through the soil microbial biomass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Literature data on the toxicity of chlorophenols for three luminescent bacteria (Vibrio fischeri, and the lux-marked Pseudomonas fluorescens 10586s pUCD607 and Burkholderia spp. RASC c2 (Tn4431)) have been analyzed in relation to a set of computed molecular physico-chemical properties. The quantitative structure-toxicity relationships of the compounds in each species showed marked differences when based upon semi-empirical molecular-orbital molecular and atom based properties. For mono-, di- and tri-chlorophenols multiple linear regression analysis of V. fischeri toxicity showed a good correlation with the solvent accessible surface area and the charge on the oxygen atom. This correlation successfully predicted the toxicity of the heavily chlorinated phenols, suggesting in V. fischeri only one overall mechanism is present for all chlorophenols. Good correlations were also found for RASC c2 with molecular properties, such as the surface area and the nucleophilic super-delocalizability of the oxygen. In contrast the best QSTR for P. fluorescens contained the 2nd order connectivity index and ELUMO suggesting a different, more reactive mechanism. Cross-species correlations were examined, and between V. fischeri and RASC c2 the inclusion of the minimum value of the nucleophilic susceptibility on the ring carbons produced good results. Poorer correlations were found with P. fluorescens highlighting the relative similarity of V. fischeri and RASC c2, in contrast to that of P. fluorescens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lux-marked bacterial biosensors and a commercial toxicity testing bacterial strain (Microtox) were exposed to 2,4-dichlorophenol (DCP) and the light output response measured. Increasing DCP concentrations caused a decrease in light output in all three biosensors with an order of sensitivity (in terms of luminescence decrease over the DCP concentration range) of Pseudomonas fluorescens <Escherichia coli <Microtox. Adsorption of DCP to E. coli was measured using uniformly ring labelled [14C]DCP and found to be very rapid. The effect of pH on toxicity and adsorption was also investigated. Low pH values increased the amount of DCP adsorbed to the cell and increased the toxicity of DCP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pulmonary disease is the main cause of morbidity and mortality in cystic fibrosis (CF) suffers, with multidrug-resistant Pseudomonas aeruginosa and Burkholderia cepacia complex as problematic pathogens in terms of recurrent and unremitting infections. Novel treatment of pulmonary infection is required to improve the prognosis and quality of life for chronically infected patients. Photodynamic antimicrobial chemotherapy (PACT) is a treatment combining exposure to a light reactive drug, with light of a wavelength specific for activation of the drug, in order to induce cell death of bacteria. Previous studies have demonstrated the susceptibility of CF pathogens to PACT in vitro. However, for the treatment to be of clinical use, light and photosensitizer must be able to be delivered successfully to the target tissue. This preliminary study assessed the potential for delivery of 635 nm light and methylene blue to the lung using an ex vivo and in vitro lung model. Using a fibre-optic light delivery device coupled to a helium-neon laser, up to 11% of the total light dose penetrated through full thickness pulmonary parenchymal tissue, which indicates potential for multiple lobe irradiation in vivo. The mass median aerodynamic diameter (MMAD) of particles generated via methylene blue solution nebulisation was 4.40 µm, which is suitable for targeting the site of infection within the CF lung. The results of this study demonstrate the ability of light and methylene blue to be delivered to the site of infection in the CF lung. PACT remains a viable option for selective killing of CF lung pathogens.