310 resultados para multidrug delivery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The primary objective of this study was to examine how the comprehensive nature of the Stress Process Model could elucidate on the stressors associated with caring for a palliative cancer patient. Method: A qualitative research strategy involving home-based face-to-face interviews with 12 bereaved family caregivers was used to examine the caregiving experience. Results: The primary stressors associated with caring for the palliative cancer care patients stemmed from care recipient symptoms and personal care needs. The absence of adequate support from the formal health care delivery system was a consistent message from all participants. There was evidence of financial stress primarily associated with the purchase of private home care to supplement formal care. In contrast, the resources that family caregivers relied on to moderate the stressful effects of caregiving included extended family, friends, and neighbors. While the stress of direct caregiving was high, the study revealed that formal care was also a significant source of stress for family caregivers. Conclusion: It was concluded that an appropriately financed, integrated system of care that followed a person-centered philosophy of care would best meet the needs of the patient and his or her family. © The Author(s) 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two porous metal organic frameworks (MOFs), [M-2(C8H2O6)(H2O)(2)] center dot 8H(2)O (M = Co, Ni), perform exceptionally well for the adsorption, storage, and water-triggered delivery of the biologically important gas nitric oxide. Adsorption and powder X-ray diffraction studies indicate that each coordinatively unsaturated metal atom in the structure coordinates to one NO molecule. All of the stored gas is available for delivery even after the material has been stored for several months. The combination of extremely high adsorption capacity (similar to 7 mmol of NO/g of MOF) and good storage stability is ideal for the preparation of NO storage solids. However, most important is that the entire reservoir of stored gas is recoverable on contact with a simple trigger (moisture). The activity of the NO storage materials is proved in myography experiments showing that the NO-releasing MOFs cause relaxation of porcine arterial tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal organic frameworks (MOFs) are highly porous materials that can store significant amounts of gas, including nitric oxide. The chemical composition and toxicology of many (but not all) of these materials makes them potentially suitable for medical applications. In this paper, we will describe how triggered release methods can be used to deliver biologically relevant amounts of NO and then show how Ni, Co and Cu-containing MOFs are biologically active materials with potential applications in several different areas (anti-thrombosis, dermatology and wound healing, anti-bacterial, vasodilation etc.). We will also discuss the pros and cons of MOFs, including their chemical and biological stability and the toxicology of MOFs in general. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper containing MCM-41 materials can be used to both store gaseous nitric oxide and to catalytically produce nitric oxide from nitrite. The active species for the reaction is copper (I). Addition of cysteine to the solution in contact with the material has different effects depending on how much Cu(I) is present. This is a new method of extending the lifetime of gas delivery from a gas storage material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in bacteriophages as therapeutic agents has recently been reawakened. Parenteral delivery is the most routinely-employed method of administration. However, injection of phages has numerous disadvantages, such as the requirement of a health professional for administration and the possibility of cross-contamination. Transdermal delivery offers one potential means of overcoming many of these problems. The present study utilized a novel poly (carbonate) (PC) hollow microneedle (MN) device for the transdermal delivery of Escherichia coli-specific 14 bacteriophages both in vitro and in vivo. MN successfully achieved bacteriophage delivery in vitro across dermatomed and full thickness skin. A concentration of 2.67 x 10(6) PFU/ml (plaque forming units per ml) was detected in the receiver compartment when delivered across dermatomed skin and 4.0 x 10(3) PFU/ml was detected in the receiver compartment when delivered across full thickness skin. An in vivo study resulted in 4.13 x 10(3) PFU/ml being detected in blood 30 min following initial MN-mediated phage administration. Clearance occurred rapidly, with phages being completely cleared from the systemic circulation within 24 h, which was expected in the absence of infection. We have shown here that MN-mediated delivery allows successful systemic phage absorption. Accordingly, bacteriophage-based therapeutics may now have an alternative route for systemic delivery. Once fully-investigated, this could lead to more widespread investigation of these interesting therapeutic viruses. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is often believed that both ionic liquids and surfactants generally behave as non-specific denaturants of proteins. In this paper, it is shown that amphiphilic ionic liquids bearing a long alkyl chain and a target molecule, where the target molecule is appended via a carboxylic ester functionality, can represent super-substrates that enable the catalytic activity of an enzyme, even at high concentrations in solution. Menthol has been chosen as the target molecule for slow and controlled fragrance delivery, and it was found that the rate of the menthol release can be controlled by the chemical structure of the ionic liquid. At a more fundamental level, this study offers an insight into the complex hydrophobic, electrostatic, and hydrogen bond interactions between the enzyme and substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of a microparticulate vaccine delivery system in eliciting a specific mucosal antibody response in the respiratory tract of mice was evaluated. Two vaccine candidate peptides representing epitopes from the G attachment and F fusion antigens from bovine respiratory syncytial virus (BRSV) were encapsulated into poly(dl- lactide co-glycolide) biodegradable microparticles. The encapsulation process did not denature the entrapped peptides as verified by detection of peptide-specific antibodies in mucosal secretions by ELISA using peptide as antigen. Following intranasal immunisation, the encapsulated peptides induced stronger upper and lower respiratory tract specific-IgA responses, respectively, than the soluble peptide forms. Moreover, a strong peptide-specific cell-mediated immune response was measured in splenocytes in vitro from the mice inoculated with the encapsulated peptides compared to their soluble form alone indicating that migration of primed T cells had taken place from the site of mucosal stimulation in the upper respiratory tract to the spleen. These results act as a foundation for vaccine efficacy studies in large animal BRSV challenge models.