183 resultados para modelling and simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the finite element simulation of debonding failures in FRP-strengthened concrete beams. A key challenge for such simulations is that common solution techniques such as the Newton-Raphson method and the arc-length method often fail to converge. This paper examines the effectiveness of using a dynamic analysis approach in such FE simulations, in which debonding failure is treated as a dynamic problem and solved using an appropriate time integration method. Numerical results are presented to show that an appropriate dynamic approach effectively overcomes the convergence problem and provides accurate predictions of test results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-dimensional monatomic chains are promising candidates for technical applications in the field of nanoelectronics due to their unique mechanical, electrical and optical properties. In particular, we investigate the mechanical properties including Young's modulus, ultimate strength and ultimate strain, which are necessities for the stability of the materials by the Car-Parrinello molecular dynamics in this work. The comparative studies for the alternating carbon-nitrogen (C3N2) chain and carbon chains (carbyne) of different lengths show that the carbon-nitrogen (C-N) chain is obviously stronger and stiffer than carbynes. Thus the C-N chain, which has been found in decomposition products of the nitromethane explosive simulations, could be a superior nano-mechanical material than the carbyne chain. Furthermore, it is found that the bond order of weakest bond in monatomic chains is positively correlated with Young's modulus and ultimate strength of materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inherently error-resilient applications in areas such as signal processing, machine learning and data analytics provide opportunities for relaxing reliability requirements, and thereby reducing the overhead incurred by conventional error correction schemes. In this paper, we exploit the tolerable imprecision of such applications by designing an energy-efficient fault-mitigation scheme for unreliable data memories to meet target yield. The proposed approach uses a bit-shuffling mechanism to isolate faults into bit locations with lower significance. This skews the bit-error distribution towards the low order bits, substantially limiting the output error magnitude. By controlling the granularity of the shuffling, the proposed technique enables trading-off quality for power, area, and timing overhead. Compared to error-correction codes, this can reduce the overhead by as much as 83% in read power, 77% in read access time, and 89% in area, when applied to various data mining applications in 28nm process technology.