210 resultados para b-D-Galactopyranose
Resumo:
Glucagon-like peptide-1 (GLP-1) is an incretin hormone whose glucose-dependent insulinotropic actions have been harnessed as a novel therapy for glycaemic control in type 2 diabetes. Although it has been known for some time that the GLP-1 receptor is expressed in the cardiovascular system where it mediates important physiological actions, it is only recently that specific cardiovascular effects of GLP-1 in the setting of diabetes have been described. GLP-1 confers indirect benefits in cardiovascular disease (CVD) under both normal and hyperglycaemic conditions via reducing established risk factors, such as hypertension, dyslipidaemia and obesity, which are markedly increased in diabetes. Emerging evidence indicates that GLP-1 also exerts direct effects on specific aspects of diabetic CVD, such as endothelial dysfunction, inflammation, angiogenesis and adverse cardiac remodelling. However, the majority of studies have employed experimental models of diabetic CVD and information on the effects of GLP-1 in the clinical setting are limited although several large-scale trials are ongoing. It is clearly important to gain a detailed knowledge of the cardiovascular actions of GLP-1 in diabetes given the large number of patients currently receiving GLP-1 based therapies. This review will therefore discuss current understanding of the effects of GLP-1 on both cardiovascular risk factors in diabetes and direct actions on the heart and vasculature in this setting, and the evidence implicating specific targeting of GLP-1 as a novel therapy for CVD in diabetes.
Resumo:
Alzheimer’s disease (AD) is associated with significant disturbances in the homeostasis of Na+ and K+ ions as well as reduced levels of Na+/K+ ATPase in the brain. This study used ICP-MS to accurately quantify Na+ and K+ concentrations in human postmortem brain tissue. We analyzed parietal cortex (Brodmann area 7) from 28 cognitively normal age-matched controls, 15 cases of moderate AD, 30 severe AD, and 15 dementia with Lewy bodies (DLB). Associations were investigated between [Na+] and [K+] and a number of variables including diagnosis, age, gender, Braak tangle stage, amyloid-β (Aβ) plaque load, tau load, frontal tissue pH, and APOE genotype. Brains from patients with severe AD had significantly higher (26%; p<0.001) [Na+] (mean 65.43 ± standard error 2.91 mmol/kg) than controls, but the concentration was not significantly altered in moderate AD or DLB. [Na+] correlated positively with Braak stage (r=0.45; p<0.0001), indicating association with disease severity. [K+] in tissue was 10% lower (p<0.05) in moderate AD than controls. However, [K+] in severe AD and DLB (40.97±1.31 mmol/kg) was not significantly different from controls. There was a significant positive correlation between [K+] and Aβ plaque load (r=0.46; p=0.035), and frontal tissue pH (r=0.35; p=0.008). [Na+] was not associated with [K+] across the groups, and neither ion was associated with tau load or APOE genotype. We have demonstrated disturbances of both [Na+] and [K+] in relation to the severity of AD and markers of AD pathology, although it is possible that these relate to late-stage secondary manifestations of the disease pathology.
Resumo:
Viral infection triggers an early host response through activation of pattern recognition receptors, including Toll-like receptors (TLR). TLR signaling cascades induce production of type I interferons and proinflammatory cytokines involved in establishing an anti-viral state as well as in orchestrating ensuing adaptive immunity. To allow infection, replication, and persistence, (herpes)viruses employ ingenious strategies to evade host immunity. The human gamma-herpesvirus Epstein-Barr virus (EBV) is a large, enveloped DNA virus persistently carried by more than 90% of adults worldwide. It is the causative agent of infectious mononucleosis and is associated with several malignant tumors. EBV activates TLRs, including TLR2, TLR3, and TLR9. Interestingly, both the expression of and signaling by TLRs is attenuated during productive EBV infection. Ubiquitination plays an important role in regulating TLR signaling and is controlled by ubiquitin ligases and deubiquitinases (DUBs). The EBV genome encodes three proteins reported to exert in vitro deubiquitinase activity. Using active site-directed probes, we show that one of these putative DUBs, the conserved herpesvirus large tegument protein BPLF1, acts as a functional DUB in EBV-producing B cells. The BPLF1 enzyme is expressed during the late phase of lytic EBV infection and is incorporated into viral particles. The N-terminal part of the large BPLF1 protein contains the catalytic site for DUB activity and suppresses TLR-mediated activation of NF-κB at, or downstream of, the TRAF6 signaling intermediate. A catalytically inactive mutant of this EBV protein did not reduce NF-κB activation, indicating that DUB activity is essential for attenuating TLR signal transduction. Our combined results show that EBV employs deubiquitination of signaling intermediates in the TLR cascade as a mechanism to counteract innate anti-viral immunity of infected hosts.
Resumo:
The design and VLSI implementation of two key components of the class-IV partial response maximum likelihood channel (PR-IV) the adaptive filter and the Viterbi decoder are described. These blocks are implemented using parameterised VHDL modules, from a library of common digital signal processing (DSP) and arithmetic functions. Design studies, based on 0.6 micron 3.3V standard cell processes, indicate that worst case sampling rates of 49 mega-samples per second are achievable for this system, with proportionally high sampling rates for full custom designs and smaller dimension processes. Significant increases in the sampling rate, from 49 MHz to approximately 180 MHz, can be achieved by operating four filter modules in parallel, and this implementation has 50% lower power consumption than a pipelined filter operating at the same speed.
Resumo:
In this study LC n-3 PUFA-specific effects on the degree of monocyte differentiation and macrophage foam cell formation were investigated by treating PMA-induced immature and mature macrophage models with LC n-3/n-6 PUFA during and post-differentiation. During immature macrophage differentiation LC n-3 PUFA alone decreased TNFα mRNA levels. EPA, and the n-6 PUFAs, linoleic acid and arachidonic acid, decreased CD36 mRNA levels, and EPA also downregulated CD49d cell-surface expression. Both LC n-3 PUFA reduced LDLr mRNA levels in immature macrophages, while DHA alone reduced levels in mature macrophages. Post-differentiation, n-3 and -6 PUFA reduced basal, but not oxidised LDL dependent cholesterol levels in immature macrophages. LC n-3 PUFA-specific reductions in LDLr and LOX-1 mRNA expression were also observed.
This study found LC n-3 PUFA specific, anti-atherogenic effects were more significant in immature macrophages. LC n-3 PUFA effects may be modulated by the extent of monocyte to macrophage differentiation.
Resumo:
Objectives: To investigate the quality of end-of-life care for patients with metastatic non-small cell lung cancer (NSCLC). Design and participants: Retrospective cohort study of patients from first hospitalisation for metastatic disease until death, using hospital, emergency department and death registration data from Victoria, Australia, between 1 July 2003 and 30 June 2010. Main outcome measures: Emergency department and hospital use; aggressiveness of care including intensive care and chemotherapy in last 30 days; palliative and supportive care provision; and place of death. Results: Metastatic NSCLC patients underwent limited aggressive treatment such as intensive care (5%) and chemotherapy (< 1%) at the end of life; however, high numbers died in acute hospitals (42%) and 61% had a length of stay of greater than 14 days in the last month of life. Although 62% were referred to palliative care services, this occurred late in the illness. In a logistic regression model adjusted for year of metastasis, age, sex, metastatic site and survival, the odds ratio (OR) of dying in an acute hospital bed compared with death at home or in a hospice unit decreased with receipt of palliative care (OR, 0.25; 95% CI, 0.21–0.30) and multimodality supportive care (OR, 0.65; 95% CI, 0.56–0.75). Conclusion: Because early palliative care for patients with metastatic NSCLC is recommended, we propose that this group be considered a benchmark of quality end-of-life care. Future work is required to determine appropriate quality-of-care targets in this and other cancer patient cohorts, with particular focus on the timeliness of palliative care engagement.
Resumo:
Glucagon-like peptide-1 (GLP-1) is an insulin-releasing hormone clinically exploited for glycaemic control in diabetes, which also confers acute cardioprotection and benefits in experimental/clinical heart failure. We specifically investigated the role of the GLP-1 mimetic, exendin-4, in post-myocardial infarction (MI) remodelling, which is a key contributor to heart failure. Adult female normoglycaemic mice underwent coronary artery ligation/sham surgery prior to infusion with exendin-4/vehicle for 4 weeks. Metabolic parameters and infarct sizes were comparable between groups. Exendin-4 protected against cardiac dysfunction and chamber dilatation post-MI and improved survival. Furthermore, exendin-4 modestly decreased cardiomyocyte hypertrophy/apoptosis but markedly attenuated interstitial fibrosis and myocardial inflammation post-MI. This was associated with altered extracellular matrix (procollagen IαI/IIIαI, connective tissue growth factor, fibronectin, TGF-β3) and inflammatory (IL-10, IL-1β, IL-6) gene expression in exendin-4-treated mice, together with modulation of both Akt/GSK-3β and Smad2/3 signalling. Exendin-4 also altered macrophage response gene expression in the absence of direct actions on cardiac fibroblast differentiation, suggesting cardioprotective effects occurring secondary to modulation of inflammation. Our findings indicate that exendin-4 protects against post-MI remodelling via preferential actions on inflammation and the extracellular matrix independently of its established actions on glycaemic control, thereby suggesting that selective targeting of GLP-1 signalling may be required to realise its clear therapeutic potential for post-MI heart failure.
Resumo:
Gastrointestinal hormones such as cholecystokinin (CCK), glucagon like peptide 1 (GLP-1), and peptide YY (PYY) play an important role in suppressing hunger and controlling food intake. These satiety hormones are secreted from enteroendocrine cells present throughout the intestinal tract. The intestinal secretin tumor cell line (STC-1) possesses many features of native intestinal enteroendocrine cells. As such, STC-1 cells are routinely used in screening platforms to identify foods or compounds that modulate secretion of gastrointestinal hormones in vitro. This chapter describes this intestinal cell model focussing on it’s applications, advantages and limitations. A general protocol is provided for challenging STC-1 cells with test compounds.
Resumo:
Brain tissue from so-called Alzheimer's disease (AD) mouse models has previously been examined using H-1 NMR-metabolomics, but comparable information concerning human AD is negligible. Since no animal model recapitulates all the features of human AD we undertook the first H-1 NMR-metabolomics investigation of human AD brain tissue. Human post-mortem tissue from 15 AD subjects and 15 age-matched controls was prepared for analysis through a series of lyophilised, milling, extraction and randomisation steps and samples were analysed using H-1 NMR. Using partial least squares discriminant analysis, a model was built using data obtained from brain extracts. Analysis of brain extracts led to the elucidation of 24 metabolites. Significant elevations in brain alanine (15.4 %) and taurine (18.9 %) were observed in AD patients (p ≤ 0.05). Pathway topology analysis implicated either dysregulation of taurine and hypotaurine metabolism or alanine, aspartate and glutamate metabolism. Furthermore, screening of metabolites for AD biomarkers demonstrated that individual metabolites weakly discriminated cases of AD [receiver operating characteristic (ROC) AUC <0.67; p < 0.05]. However, paired metabolites ratios (e.g. alanine/carnitine) were more powerful discriminating tools (ROC AUC = 0.76; p < 0.01). This study further demonstrates the potential of metabolomics for elucidating the underlying biochemistry and to help identify AD in patients attending the memory clinic
Resumo:
Ethnopharmacological relevance
The two plants investigated here (Fagonia cretica L. and Hedera nepalensis K. Koch) have been previously reported as natural folk medicines for the treatment of diabetes but until now no scientific investigation of potential anti-diabetic effects has been reported.
Materials and methods
In vitro inhibitory effect of the two tested plants and their five isolated compounds on the dipeptidyl peptidase 4 (DPP-4) was studied for the assessment of anti-diabetic activity.
Results
A crude extract of Fagonia cretica possessed good inhibitory activity (IC50value: 38.1 μg/ml) which was also present in its n-hexane (FCN), ethyl acetate (FCE) or aqueous (FCA) fractions. A crude extract of Hedera nepalensis (HNC) possessed even higher inhibitory activity (IC50value: 17.2 μg/ml) and this activity was largely retained when further fractionated in either ethyl acetate (HNE; IC50: 34.4 μg/ml) or n-hexane (HNN; 34.2 μg/ml). Bioactivity guided isolation led to the identification of four known compounds (isolated for the first time) from Fagonia cretica: quinovic acid (1), quinovic acid-3β-O-β-d-glycopyranoside (2), quinovic acid-3β-O-β-d-glucopyranosyl-(28→1)-β-d-glucopyranosyl ester (3), and stigmasterol (4) all of which inhibited DPP-4 activity (IC50: 30.7, 57.9, 23.5 and >100 μM, respectively). The fifth DPP-4 inhibitor, the triterpenoid lupeol (5) was identified in Hedera nepalensis (IC50: 31.6 μM).
Conclusion
The experimental study revealed that Fagonia cretica and Hedera nepalensis contain compounds with significant DPP-4 inhibitory activity which should be further investigated for their anti-diabetic potential.
Resumo:
Whey protein has been indicated to curb diet-induced obesity, glucose intolerance and delay the onset of type 2 diabetes mellitus. Here the effects of intact crude whey, intact individual whey proteins and beta-lactoglobulin hydrolysates on an enteroendocrine (EE) cell model were examined. STC-1 pGIP/neo cells were incubated with several concentrations of yogurt whey (YW), cheese whey (CW), beta-lactoglobulin (BLG), alpha-lactalbumin (ALA) and bovine serum albumin (BSA). The findings demonstrate that BLG stimulates EE cell proliferation, and also GLP-1 secretion (an effect which is lost following hydrolysis with chymotrypsin or trypsin). ALA is a highly potent GLP-1 secretagogue which also increases the intracellular levels of GLP-1. Conversely, whey proteins and hydrolysates had little impact on GIP secretion. This appears to be the first investigation of the effects of the three major proteins of YW and CW on EE cells. The anti-diabetic potential of whey proteins should be further investigated.
Resumo:
This study combined high resolution mass spectrometry (HRMS), advanced chemometrics and pathway enrichment analysis to analyse the blood metabolome of patients attending the memory clinic: cases of mild cognitive impairment (MCI; n = 16), cases of MCI who upon subsequent follow-up developed Alzheimer's disease (MCI_AD; n = 19), and healthy age-matched controls (Ctrl; n = 37). Plasma was extracted in acetonitrile and applied to an Acquity UPLC HILIC (1.7μm x 2.1 x 100 mm) column coupled to a Xevo G2 QTof mass spectrometer using a previously optimised method. Data comprising 6751 spectral features were used to build an OPLS-DA statistical model capable of accurately distinguishing Ctrl, MCI and MCI_AD. The model accurately distinguished (R2 = 99.1%; Q2 = 97%) those MCI patients who later went on to develop AD. S-plots were used to shortlist ions of interest which were responsible for explaining the maximum amount of variation between patient groups. Metabolite database searching and pathway enrichment analysis indicated disturbances in 22 biochemical pathways, and excitingly it discovered two interlinked areas of metabolism (polyamine metabolism and L-Arginine metabolism) were differentially disrupted in this well-defined clinical cohort. The optimised untargeted HRMS methods described herein not only demonstrate that it is possible to distinguish these pathologies in human blood but also that MCI patients 'at risk' from AD could be predicted up to 2 years earlier than conventional clinical diagnosis. Blood-based metabolite profiling of plasma from memory clinic patients is a novel and feasible approach in improving MCI and AD diagnosis and, refining clinical trials through better patient stratification.
Resumo:
Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.