239 resultados para Right ventricular dysfunction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impairment of endothelial nitric oxide synthase (eNOS) activity is implicated in the pathogenesis of endothelial dysfunction in many diseases including ischaemic stroke. The modulation of eNOS during and/or following ischaemic injury often represents a futile compensatory mechanism due to a significant decrease in nitric oxide (NO) bioavailability coupled with dramatic increases in the levels of reactive oxygen species that further neutralise NO. However, applications of a number of therapeutic agents alone or in combination have been shown to augment eNOS activity under a variety of pathological conditions by potentiating the expression and/or activity of Akt/eNOS/NO pathway components. The list of these therapeutic agents include NO donors, statins, angiotensin-converting enzyme inhibitors, calcium channel blockers, phosphodiesterase-3 inhibitors, aspirin, dipyridamole and ellagic acid. While most of these compounds exhibit anti-platelet properties and are able to up-regulate eNOS expression in endothelial cells and platelets, others suppress eNOS uncoupling and tetrahydrobiopterin (an eNOS stabiliser) oxidation. As the number of therapeutic molecules that modulate the expression and activity of eNOS increases, further detailed research is required to reveal their mode of action in preventing and/or reversing the endothelial dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Enhanced vascular permeability attributable to disruption of blood-brain barrier results in the development of cerebral edema after stroke. Using an in vitro model of the brain barrier composed of human brain microvascular endothelial cells and human astrocytes, this study explored whether small GTPase RhoA and its effector protein Rho kinase were involved in permeability changes mediated by oxygen-glucose deprivation (OGD), key pathological phenomena during ischemic stroke.

METHODS: OGD increased RhoA and Rho kinase protein expressions in human brain microvascular endothelial cells and human astrocytes while increasing or unaffecting that of endothelial nitric oxide synthase in respective cells. Reperfusion attenuated the expression and activity of RhoA and Rho kinase in both cell types compared to their counterparts exposed to equal periods of OGD alone while selectively increasing human brain microvascular endothelial cells endothelial nitric oxide synthase protein levels. OGD compromised the barrier integrity as confirmed by decreases in transendothelial electric resistance and concomitant increases in flux of permeability markers sodium fluorescein and Evan's blue albumin across cocultures. Transfection of cells with constitutively active RhoA also increased flux and reduced transendothelial electric resistance, whereas inactivation of RhoA by anti-RhoA Ig electroporation exerted opposite effects. In vitro cerebral barrier dysfunction was accompanied by myosin light chain overphosphorylation and stress fiber formation. Reperfusion and treatments with a Rho kinase inhibitor Y-27632 significantly attenuated barrier breakdown without profoundly altering actin structure.

CONCLUSIONS: Increased RhoA/Rho kinase/myosin light chain pathway activity coupled with changes in actin cytoskeleton account for OGD-induced endothelial barrier breakdown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major advances have been made in identifying potential vaccine molecules for the control of fasciolosis in livestock but we have yet to reach the level of efficacy required for commercialisation. The pathogenesis of fasciolosis is associated with liver damage that is inflicted by migrating and feeding immature flukes as well as host inflammatory immune responses to parasite-secreted molecules and tissue damage alarm signals. Immune suppression/modulation by the parasites prevents the development of protective immune responses as evidenced by the lack of immunity observed in naturally and experimentally infected animals. In our opinion, future efforts need to focus on understanding how parasites invade and penetrate the tissues of their hosts and how they potentiate and control the ensuing immune responses, particularly in the first days of infection. Emerging 'omics' data employed in an unbiased approach are helping us understand liver fluke biology and, in parallel with new immunological data, to identify molecules that are essential to parasite development and accessible to vaccine-induced immune responses.