190 resultados para tumor classification
Resumo:
The proto-oncogene c-Myc paradoxically activates both proliferation and apoptosis. In the pathogenic state, c-Myc-induced apoptosis is bypassed via a critical, yet poorly understood escape mechanism that promotes cellular transformation and tumorigenesis. The accumulation of unfolded proteins in the ER initiates a cellular stress program termed the unfolded protein response (UPR) to support cell survival. Analysis of spontaneous mouse and human lymphomas demonstrated significantly higher levels of UPR activation compared with normal tissues. Using multiple genetic models, we demonstrated that c-Myc and N-Myc activated the PERK/eIF2α/ATF4 arm of the UPR, leading to increased cell survival via the induction of cytoprotective autophagy. Inhibition of PERK significantly reduced Myc-induced autophagy, colony formation, and tumor formation. Moreover, pharmacologic or genetic inhibition of autophagy resulted in increased Myc-dependent apoptosis. Mechanistically, we demonstrated an important link between Myc-dependent increases in protein synthesis and UPR activation. Specifically, by employing a mouse minute (L24+/-) mutant, which resulted in wild-type levels of protein synthesis and attenuation of Myc-induced lymphomagenesis, we showed that Myc-induced UPR activation was reversed. Our findings establish a role for UPR as an enhancer of c-Myc-induced transformation and suggest that UPR inhibition may be particularly effective against malignancies characterized by c-Myc overexpression.
Resumo:
Clear cell renal cell carcinoma (ccRCC), a tubular epithelial cell (TEC) malignancy, frequently secretes tumor necrosis factor (TNF). TNF signals via two distinct receptors (TNFRs). TNFR1, expressed in normal kidney primarily on endothelial cells, activates apoptotic signaling kinase 1 and nuclear factor-kappaB (NF-kappaB) and induces cell death, whereas TNFR2, inducibly expressed on endothelial cells and on TECs by injury, activates endothelial/epithelial tyrosine kinase (Etk), which trans-activates vascular endothelial growth factor receptor 2 (VEGFR2) to promote cell proliferation. We investigated TNFR expression in clinical samples and function in short-term organ cultures of ccRCC tissue treated with wild-type TNF or specific muteins selective for TNFR1 (R1-TNF) or TNFR2 (R2-TNF). There is a significant increase in TNFR2 but not TNFR1 expression on malignant TECs that correlates with increasing malignant grade. In ccRCC organ cultures, R1-TNF increases TNFR1, activates apoptotic signaling kinase and NF-kappaB, and promotes apoptosis in malignant TECs. R2-TNF increases TNFR2, activates NF-kappaB, Etk, and VEGFR2 and increases entry into the cell cycle. Wild-type TNF induces both sets of responses. R2-TNF actions are blocked by pretreatment with a VEGFR2 kinase inhibitor. We conclude that TNF, acting through TNFR2, is an autocrine growth factor for ccRCC acting via Etk-VEGFR2 cross-talk, insights that may provide a more effective therapeutic approach to this disease.
Resumo:
Tumour classification has traditionally focused on differentiation and cellular morphology, and latterly on the application of genomic approaches. By combining chromatin immunoprecipitation with expression array, it has been possible to identify direct gene targets for transcription factors for nuclear hormone receptors. At the same time, there have been great strides in deriving stem and progenitor cells from tissues. It is therefore timely to propose that pairing the isolation of these cell subpopulations from tissues and tumours with these genomics approaches will reveal conserved gene targets for transcription factors. By focusing on transcription factors (lineage-survival oncogenes) with roles in both organogenesis and tumourigenesis at multiple organ sites, we suggest that this comparative genomics approach will enable developmental biology to be used more fully in relation to understanding tumour progression and will reveal new cancer markers. We focus here on neurogenesis and neuroendocrine differentiation in tumours.
Resumo:
The Magellanic Clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust. We have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring-mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects, 4 post-AGB objects, 22 red supergiants, 27 stars (of which 23 are dusty OB stars), 24 planetary nebulae (PNe), 10 Wolf-Rayet stars, 3 H II regions, 3 R Coronae Borealis stars, 1 Blue Supergiant and 6 other objects, including 2 foreground AGB stars. We use these classifications to evaluate the success of photometric classification methods reported in the literature.
Resumo:
Integrins (ITGs) are key elements in cancer biology, regulating tumor growth, angiogenesis and lymphangiogenesis through interactions of the tumor cells with the microenvironment. Moving from the hypothesis that ITGs could have different effects in stage II and III colon cancer, we tested whether a comprehensive panel of germline single-nucleotide polymorphisms (SNPs) in ITG genes could predict stage-specific time to tumor recurrence (TTR). A total of 234 patients treated with 5-fluorouracil-based chemotherapy at the University of Southern California were included in this study. Whole-blood samples were analyzed for germline SNPs in ITG genes using PCR-restriction fragment length polymorphism or direct DNA sequencing. In the multivariable analysis, stage II colon cancer patients with at least one G allele for ITGB3 rs4642 had higher risk of recurrence (hazard ratio (HR)=4.027, 95% confidence interval (95% CI) 1.556-10.421, P=0.004). This association was also significant in the combined stage II-III cohort (HR=1.975, 95% CI 1.194-3.269, P=0.008). The predominant role of ITGB3 rs4642 in stage II diseases was confirmed using recursive partitioning, showing that ITGB3 rs4642 was the most important factor in stage II diseases. In contrast, in stage III diseases the combined analysis of ITGB1 rs2298141 and ITGA4 rs7562325 allowed to identify three distinct prognostic subgroups (P=0.009). The interaction between stage and the combined ITGB1 rs2298141 and ITGA4 rs7562325 on TTR was significant (P=0.025). This study identifies germline polymorphisms in ITG genes as independent stage-specific prognostic markers for stage II and III colon cancer. These data may help to select subgroups of patients who may benefit from ITG-targeted treatments.
Resumo:
BACKGROUND: Cetuximab has shown significant clinical activity in metastatic colon cancer. However, cetuximab-containing neoadjuvant chemoradiation has not been shown to improve tumor response in locally advanced rectal cancer patients in recent phase I/II trials. We evaluated functional germline polymorphisms of genes involved in epidermal growth factor receptor pathway, angiogenesis, antibody-dependent cell-mediated cytotoxicity, DNA repair, and drug metabolism, for their potential role as molecular predictors for clinical outcome in locally advanced rectal cancer patients treated with preoperative cetuximab-based chemoradiation.
METHODS: 130 patients (74 men and 56 women) with locally advanced rectal cancer (4 with stage II, 109 with stage III, and 15 with stage IV, 2 unknown) who were enrolled in phase I/II clinical trials treated with cetuximab-based chemoradiation in European cancer centers were included. Genomic DNA was extracted from formalin-fixed paraffin-embedded tumor samples and genotyping was done by using PCR-RFLP assays. Fisher's exact test was used to examine associations between polymorphisms and complete pathologic response (pCR) that was determined by a modified Dworak classification system (grade III vs. grade IV: complete response).
RESULTS: Patients with the epidermal growth factor (EGF) 61 G/G genotype had pCR of 45% (5/11), compared with 21% (11/53) in patients heterozygous, and 2% (1/54) in patients homozygous for the A/A allele (P < 0.001). In addition, this association between EGF 61 G allele and pCR remained significant (P = 0.019) in the 59 patients with wild-type KRAS.
CONCLUSION: This study suggested EGF A+61G polymorphism to be a predictive marker for pCR, independent of KRAS mutation status, to cetuximab-based neoadjuvant chemoradiation of patients with locally advanced rectal cancer.
Resumo:
AIMS: Survival and response rates in metastatic colorectal cancer remain poor, despite advances in drug development. There is increasing evidence to suggest that gender-specific differences may contribute to poor clinical outcome. We tested the hypothesis that genomic profiling of metastatic colorectal cancer is dependent on gender.
MATERIALS & METHODS: A total of 152 patients with metastatic colorectal cancer who were treated with oxaliplatin and continuous infusion 5-fluorouracil were genotyped for 21 polymorphisms in 13 cancer-related genes by PCR. Classification and regression tree analysis tested for gender-related association of polymorphisms with overall survival, progression-free survival and tumor response.
RESULTS: Classification and regression tree analysis of all polymorphisms, age and race resulted in gender-specific predictors of overall survival, progression-free survival and tumor response. Polymorphisms in the following genes were associated with gender-specific clinical outcome: estrogen receptor β, EGF receptor, xeroderma pigmentosum group D, voltage-gated sodium channel and phospholipase A2.
CONCLUSION: Genetic profiling to predict the clinical outcome of patients with metastatic colorectal cancer may depend on gender.
Resumo:
Sediment particle size analysis (PSA) is routinely used to support benthic macrofaunal community distribution data in habitat mapping and Ecological Status (ES) assessment. No optimal PSA Method to explain variability in multivariate macrofaunal distribution has been identified nor have the effects of changing sampling strategy been examined. Here, we use benthic macrofaunal and PSA grabs from two embayments in the south of Ireland. Four frequently used PSA Methods and two common sampling strategies are applied. A combination of laser particle sizing and wet/dry sieving without peroxide pre-treatment to remove organics was identified as the optimal Method for explaining macrofaunal distributions. ES classifications and EUNIS sediment classification were robust to changes in PSA Method. Fauna and PSA samples returned from the same grab sample significantly decreased macrofaunal variance explained by PSA and caused ES to be classified as lower. Employing the optimal PSA Method and sampling strategy will improve benthic monitoring. © 2012 Elsevier Ltd.
Molecular classification of non-invasive breast lesions for personalised therapy and chemoprevention
Resumo:
Breast cancer screening has led to a dramatic increase in the detection of pre-invasive breast lesions. While mastectomy is almost guaranteed to treat the disease, more conservative approaches could be as effective if patients can be stratified based on risk of co-existing or recurrent invasive disease.Here we use a range of biomarkers to interrogate and classify purely non-invasive lesions (PNL) and those with co-existing invasive breast cancer (CEIN). Apart from Ductal Carcinoma In Situ (DCIS), relative homogeneity is observed. DCIS contained a greater spread of molecular subtypes. Interestingly, high expression of p-mTOR was observed in all PNL with lower expression in DCIS and invasive carcinoma while the opposite expression pattern was observed for TOP2A.Comparing PNL with CEIN, we have identified p53 and Ki67 as predictors of CEIN with a combined PPV and NPV of 90.48% and 43.3% respectively. Furthermore, HER2 expression showed the best concordance between DCIS and its invasive counterpart.We propose that these biomarkers can be used to improve the management of patients with pre-invasive breast lesions following further validation and clinical trials. p53 and Ki67 could be used to stratify patients into low and high-risk groups for co-existing disease. Knowledge of expression of more actionable targets such as HER2 or TOP2A can be used to design chemoprevention or neo-adjuvant strategies. Increased knowledge of the molecular profile of pre-invasive lesions can only serve to enhance our understanding of the disease and, in the era of personalised medicine, bring us closer to improving breast cancer care.
Resumo:
BACKGROUND: Ras signaling regulates a number of important processes in the heart, including cell growth and hypertrophy. Although it is known that defective Ras signaling is associated with Noonan, Costello, and other syndromes that are characterized by tumor formation and cardiac hypertrophy, little is known about factors that may control it. Here we investigate the role of Ras effector Ras-association domain family 1 isoform A (RASSF1A) in regulating myocardial hypertrophy.
METHODS AND RESULTS: A significant downregulation of RASSF1A expression was observed in hypertrophic mouse hearts, as well as in failing human hearts. To further investigate the role of RASSF1A in cardiac (patho)physiology, we used RASSF1A knock-out (RASSF1A(-)(/)(-)) mice and neonatal rat cardiomyocytes with adenoviral overexpression of RASSF1A. Ablation of RASSF1A in mice significantly enhanced the hypertrophic response to transverse aortic constriction (64.2% increase in heart weight/body weight ratio in RASSF1A(-)(/)(-) mice compared with 32.4% in wild type). Consistent with the in vivo data, overexpression of RASSF1A in cardiomyocytes markedly reduced the cellular hypertrophic response to phenylephrine stimulation. Analysis of molecular signaling events in isolated cardiomyocytes indicated that RASSF1A inhibited extracellular regulated kinase 1/2 activation, likely by blocking the binding of Raf1 to active Ras.
CONCLUSIONS: Our data establish RASSF1A as a novel inhibitor of cardiac hypertrophy by modulating the extracellular regulated kinase 1/2 pathway.
Resumo:
Plasma membrane calmodulin-dependent calcium ATPases (PMCAs) are enzymatic systems implicated in the extrusion of calcium from the cell. We and others have previously identified molecular interactions between the cytoplasmic COOH-terminal end of PMCA and PDZ domain-containing proteins. These interactions suggested a new role for PMCA as a modulator of signal transduction pathways. The existence of other intracellular regions in the PMCA molecule prompted us to investigate the possible participation of other domains in interactions with different partner proteins. A two-hybrid screen of a human fetal heart cDNA library, using the region 652-840 of human PMCA4b (located in the catalytic, second intracellular loop) as bait, revealed a novel interaction between PMCA4b and the tumor suppressor RASSF1, a Ras effector protein involved in H-Ras-mediated apoptosis. Immunofluorescence co-localization, immunoprecipitation, and glutathione S-transferase pull-down experiments performed in mammalian cells provided further confirmation of the physical interaction between the two proteins. The interaction domain has been narrowed down to region 74-123 of RASSF1C (144-193 in RASSF1A) and 652-748 of human PMCA4b. The functionality of this interaction was demonstrated by the inhibition of the epidermal growth factor-dependent activation of the Erk pathway when PMCA4b and RASSF1 were co-expressed. This inhibition was abolished by blocking PMCA/RASSSF1 association with an excess of a green fluorescent protein fusion protein containing the region 50-123 of RASSF1C. This work describes a novel protein-protein interaction involving a domain of PMCA other than the COOH terminus. It suggests a function for PMCA4b as an organizer of macromolecular protein complexes, where PMCA4b could recruit diverse proteins through interaction with different domains. Furthermore, the functional association with RASSF1 indicates a role for PMCA4b in the modulation of Ras-mediated signaling.
Resumo:
The role of insulin-like growth factor binding protein 2 (IGFBP2) in cancer is unclear. In general, IGFBP2 is considered to be oncogenic and its expression is often observed to be elevated in cancer. However, there are a number of conflicting reports in vitro and in vivo where IGFBP2 acts in a tumor suppressor manner. In this mini-review, we discuss the factors influencing the variation in IGFBP2 expression in cancer and our interpretation of these findings.