244 resultados para mesothelioma, lysine acetyltransferase, epigenetics, MG 149, inflammation
Resumo:
Therapeutic options for malignant pleural mesothelioma (MPM) are limited despite the increasing incidence globally. The vinca alkaloid vinorelbine exhibits clinical activity; however, to date, treatment optimization has not been achieved using biomarkers. BRCA1 regulates sensitivity to microtubule poisons; however, its role in regulating vinorelbine-induced apoptosis in mesothelioma is unknown. Here we demonstrate that BRCA1 plays an essential role in mediating vinorelbine-induced apoptosis, as evidenced by (1) the strong correlation between vinorelbine sensitivity and BRCA1 expression level; (2) induction of resistance to vinorelbine by BRCA1 using siRNA oligonucleotides; (3) dramatic down-regulation of BRCA1 following selection for vinorelbine resistance; and (4) the re-activation of vinorelbine-induced apoptosis following re-expression of BRCA1 in resistant cells. To determine whether loss of BRCA1 expression in mesothelioma was potentially relevant in vivo, BRCA1 immunohistochemistry was subsequently performed on 144 primary mesothelioma specimens. Loss of BRCA1 protein expression was identified in 38.9% of samples. Together, these data suggest that BRCA1 plays a critical role in mediating apoptosis by vinorelbine in mesothelioma, warranting its clinical evaluation as a predictive biomarker.
Proteolytic cleavage of elafin by 20S proteasome may contribute to inflammation in acute lung injury
Resumo:
RATIONALE:
We hypothesise that elafin levels in acute lung injury (ALI) decrease over time due, in part, to proteolytic degradation as observed in other lung diseases.
OBJECTIVES:
The aim of this study was to characterise temporal changes in elafin concentration in patients with ALI and to evaluate whether a decrease in elafin levels is due to elevated protease activity.
METHODS:
Bronchoalveolar lavage fluid (BALF) was obtained from patients with ALI within 48 h of onset of ALI (day 0), at day 3 and at day 7. Elafin levels were quantified by ELISA. Elafin susceptibility to proteolytic cleavage by ALI BALF was assessed by Western blot and by high-performance liquid chromatography-mass spectrometry.
MEASUREMENTS AND MAIN RESULTS:
Elafin levels were found to be significantly increased at the onset of ALI compared with healthy volunteers and fell significantly by day 7 compared with day 0. In contrast, levels of secretory leukocyte protease inhibitor did not decrease over time. This decrease in elafin was due to cleavage by the 20S proteasome which was significantly increased in ALI BALF. Incubation of ALI BALF with the proteasome inhibitor epoxomicin confirmed that 20S proteasome protease activity was responsible for proteolytic cleavage of elafin, resulting in diminished anti-elastase activity. In addition, free neutrophil elastase activity significantly increased in ALI BALF from day 0 to day 7.
CONCLUSIONS:
Elafin concentrations fall within the pulmonary compartment over the course of ALI as a result of proteolytic degradation. This loss of elafin may predispose people, in part, to excessive inflammation in ALI.
Resumo:
PURPOSE:
To investigate the role of the Fractalkine receptor CX3CR1 pathway in oxidative insults-mediated retinal degeneration and immune activation.
METHODS:
A prooxidant, paraquat (0.75 µM) was injected into the vitreous of C57BL/6J, CX3CR1(gpf/+), and CX3CR1(gfp/gfp) mice. Retinal lesions were investigated clinically by topic endoscopic fundus imaging and fluorescence angiography, and pathologically by light- and electron microscopy. Retinal immune gene expression was determined by real-time RT-PCR. Microglial activation and immune cell infiltration were examined by confocal microscopy of retinal flatmounts.
RESULTS:
Intravitreal injection of paraquat (0.75 µM) resulted in acute retinal capillary nonperfusion within 2 days, which improved from 4 days to 4 weeks postinjection (p.i.). Panretinal degeneration was observed at 4 days p.i. and progressed further at 4 weeks p.i. In the absence of CX3CR1, retinal degeneration was exaggerated and was accompanied by increased TNF-a, iNOS, IL-1ß, Ccl2, and Casp-1 gene expression. Confocal microscopy of retinal flatmounts revealed microglial activation and CD44(+)MHC-II(+) monocyte and GR1(+) neutrophil infiltration in paraquat-injected eyes. The number of activated microglia and infiltrating leukocytes was significantly higher in CX3CR1(gfp/gfp) mice than in CX3CR1(gfp/+) mice.
CONCLUSIONS:
Our results suggest that the CX3CR1 signaling pathway may play an important role in controlling retinal inflammation under oxidative and ischemia/reperfusion conditions. In the absence of CX3CR1, uncontrolled retinal inflammation results in exaggerated retinal degeneration.
Resumo:
Background: Clinical and experimental studies suggest that the probiotic mixture VSL#3 has protective activities in the context of inflammatory bowel disease (IBD). The aim of the study was to reveal bacterial strain-specific molecular mechanisms underlying the anti-inflammatory potential of VSL#3 in intestinal epithelial cells (IEC).
Methodology/Principal Findings: VSL#3 inhibited TNF-induced secretion of the T-cell chemokine interferon-inducible protein (IP-10) in Mode-K cells. Lactobacillus casei (L. casei) cell surface proteins were identified as active anti-inflammatory components of VSL#3. Interestingly, L. casei failed to block TNF-induced IP-10 promoter activity or IP-10 gene transcription at the mRNA expression level but completely inhibited IP-10 protein secretion as well as IP-10-mediated T-cell transmigration. Kinetic studies, pulse-chase experiments and the use of a pharmacological inhibitor for the export machinery (brefeldin A) showed that L. casei did not impair initial IP-10 production but decreased intracellular IP-10 protein stability as a result of blocked IP-10 secretion. Although L. casei induced IP-10 ubiquitination, the inhibition of proteasomal or lysosomal degradation did not prevent the loss of intracellular IP-10. Most important for the mechanistic understanding, the inhibition of vesicular trafficking by 3-methyladenine (3-MA) inhibited IP-10 but not IL-6 expression, mimicking the inhibitory effects of L. casei. These findings suggest that L. casei impairs vesicular pathways important for the secretion of IP-10, followed by subsequent degradation of the proinflammatory chemokine. Feeding studies in TNF Delta ARE and IL-10(-/-) mice revealed a compartimentalized protection of VSL#3 on the development of cecal but not on ileal or colonic inflammation. Consistent with reduced tissue pathology in IL-10(-/-) mice, IP-10 protein expression was reduced in primary epithelial cells.
Conclusions/Significance: We demonstrate segment specific effects of probiotic intervention that correlate with reduced IP-10 protein expression in the native epithelium. Furthermore, we revealed post-translational degradation of IP-10 protein in IEC to be the molecular mechanism underlying the anti-inflammatory effect.
Resumo:
Vascular diseases, including atherosclerosis, angioplasty-induced restenosis, vessel graft arteriosclerosis and hypertension-related stenosis, remain the most prevalent cause of death in the developed world. The aetiology of vascular diseases is multifactorial with both genetic and environmental factors. Recently, some of the most promising research identifies the epigenetic modification of the genome to play a major role in the disease development, linking the environmental insults with gene regulation. In this process, modification of DNA by methylation, and histone modification by acetylation, methylation, phosphorylation and/or SUMOylation are reported. Importantly, recent studies demonstrated that histone deacetylase (HDAC) enzymes are crucial in endothelial integrity, smooth muscle proliferation and in the formation of arteriosclerosis in animal models. The study of HDACs has shown remarkable specificity of HDAC family members in vascular cell growth/death that influences the disease process. Interestingly, the effects of HDACs on arteriosclerosis development in animal models have been observed after HDAC inhibition using specific inhibitors. This provides a new approach for the treatment of vascular disease using the agents that influence the epigenetic process in vascular cells. This review updates the rapid advances in epigenetics of vascular diseases focusing on the role of HDAC family in atherosclerosis. It will also discuss the underlying mechanisms of histone acetylation in vascular cells and highlight the therapeutic potential of such agents.
Resumo:
OBJECTIVE: To test whether simvastatin improves physiological and biological outcomes in patients undergoing esophagectomy.
BACKGROUND: One-lung ventilation during esophagectomy is associated with inflammation, alveolar epithelial and systemic endothelial injury, and the development of acute lung injury (ALI). Statins that modify many of the underlying processes are a potential therapy to prevent ALI.
METHODS: We conducted a randomized double-blind placebo-controlled trial in patients undergoing esophagectomy. Patients received simvastatin 80 mg or placebo enterally for 4 days preoperatively and 7 days postoperatively. The primary end point was pulmonary dead space (Vd/Vt) at 6 hours after esophagectomy or before extubation. Inflammation was assessed by plasma cytokines and intraoperative exhaled breath condensate pH; alveolar type 1 epithelial injury was assessed by plasma receptor for advanced glycation end products and systemic endothelial injury by the urine albumin-creatinine ratio.
RESULTS: Thirty-nine patients were randomized; 8 patients did not undergo surgery and were excluded. Fifteen patients received simvastatin and 16 received placebo. There was no difference in Vd/Vt or other physiological outcomes. Simvastatin resulted in a significant decrease in plasma MCP-1 on day 3 and reduced exhaled breath condensate acidification. Plasma receptor for advanced glycation end products was significantly lower in the simvastatin-treated group, as was the urine albumin-creatinine ratio on day 7 postsurgery. ALI developed in 4 patients in the placebo group and no patients in the simvastatin group although this difference was not statistically significant (P = 0.1).
CONCLUSIONS: In this proof of concept study, pretreatment with simvastatin in esophagectomy decreased biomarkers of inflammation as well as pulmonary epithelial and systemic endothelial injury.
Resumo:
The NF-kB transcriptional factor plays a key role governing the activation of immune responses. Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that K. pneumoniae infections are characterized by lacking an early in?ammatory response. Recently, we have demonstrated that Klebsiella antagonizes the activation of NF-kB via the deubiquitinase CYLD. In this work, by applying a high-throughput siRNA gain-of-function screen interrogating the human kinome, we identi?ed 17 kinases that when targeted by siRNA restored IL-1b-dependent NF-kB translocation in infected cells. Further characterization revealed that K. pneumoniae activates an EGF receptor (EGFR)- phosphatidylinositol 3-OH kinase (PI3K)–AKT–PAK4–ERK–GSK3b signalling pathway to attenuate the cytokine-dependent nuclear translocation of NF-kB. Our data also revealed that CYLD is a downstream effector of K. pneumoniae-induced EGFR–
PI3K–AKT–PAK4–ERK–GSK3b signalling pathway. Our efforts to identify the bacterial factor(s) responsible for EGFR activation demonstrate that a capsule (CPS) mutant did not activate EGFR hence
suggesting that CPS could mediate the activation of EGFR. Supporting this notion, puri?ed CPS did activate EGFR as well as the EGFR-dependent PI3K–AKT–PAK4–ERK–GSK3b signalling pathway. CPS-mediated EGFR activation was dependent on a TLR4–MyD88–c-SRC-dependent pathway. Several promising drugs have been developed to antagonize this cascade. We propose that agents targeting this signalling pathway might provide selective alternatives for the management of K. pneumoniae pneumonias.
Resumo:
The aim of this study was to gain further insight into the role that central dopaminergic pathways play in GH neuroregulation in man. Our experimental hypothesis was based on the possibility that most of the controversies on DA role could be due to the fact that the hypothalamic somatotroph rhythm (HSR) was not taken into account when interpreting the GH responses after pharmacological manipulations on dopaminergic pathways. In 10 normal subjects we monitored the effect of central dopaminergic blockade, achieved with metoclopramide (MCP; 10 mg, i.v. Bolus), on the pattern of spontaneous GH secretion and the GH responses to a GHRH challenge (GRF , 1 µg/kg, i.v. bolus) administered together with MCP or 60 min after this drug was given. The study of HSR was made according to our previous postulate. Our results indicate that MCP administration, either prior to or together with the GHRH bolus, significantly increased GHRH-induced GH release during a refractory HSR phase; but not when the GHRH challenge took place during a spotaneous secretory phase. The strong relationship between pre-GHRH plasma GH values and GHRH-elicited GH peaks was lost when MCP was given. These data indicate that MCP was able to disrupt the intrinsic HSR by inhibiting the hypothalamic release of somatostain (SS). While a main conclusion would be that central DA is a secretagogue for SS secretion, our results also suggest that this role could be dependent on its effects on the adrenergic inputs to SS neurons.
Resumo:
PURPOSE: To describe a case with bullous keratopathy and anterior segment inflammation associated with heavy liquids. DESIGN: Observational case report. METHODS: Review of clinical and histopathologic changes. RESULTS: A 65-year-old patient underwent a pars plana vitrectomy for a rhegmatogenous retinal detachment. Perfluorodecalin was used as a temporary retinal tamponade. After surgery, bubbles of heavy liquid were noted in the anterior chamber. Fifteen months later, severe corneal edema developed, associated with corneal vascularization and keratic precipitates. Removal of heavy liquid through a paracentesis was attempted but the cornea remained edematous, and a penetrating keratoplasty was performed. In the histopathologic examination inflammatory changes from retention of perfluorodecalin were observed. There was a decompensated cornea with florid bullous keratopathy, inflammatory infiltration with vascularization, and deposition of perfluorodecalin within keratocytes and perivascular macrophages. CONCLUSION: Presence of heavy liquids in the anterior chamber may be associated with an intense inflammatory response and corneal decompensation. © 2005 by Elsevier Inc. All rights reserved.
Resumo:
Aims. To examine the antioxidant and anti-inflammatory effects of pomegranate polyphenols in obese patients with type 2 diabetes (T2DM) (n = 8) and in healthy nondiabetic controls (n = 9). Methods. Participants received 2 capsules of pomegranate polyphenols (POMx, 1 capsule = 753?mg polyphenols) daily for 4 weeks. Blood draws and anthropometrics were performed at baseline and at 4 weeks of the study. Results. Pomegranate polyphenols in healthy controls and in T2DM patients did not significantly affect body weight and blood pressure, glucose and lipids. Among clinical safety profiles, serum electrolytes, renal function tests, and hematological profiles were not significantly affected by POMx supplementation. However, aspartate aminotransferase (AST) showed a significant increase in healthy controls, while alanine aminotransferase (ALT) was significantly decreased in T2DM patients at 4 weeks (P <0.05), though values remained within the normal ranges. Among the biomarkers of lipid oxidation and inflammation, oxidized LDL and serum C-reactive protein (CRP) did not differ at 4 weeks in either group, while pomegranate polyphenols significantly decreased malondialdehyde (MDA) and hydroxynonenal (HNE) only in the diabetic group versus baseline (P <0.05). Conclusions. POMx reduces lipid peroxidation in patients with T2DM, but with no effects in healthy controls, and specifically modulates liver enzymes in diabetic and nondiabetic subjects. Larger clinical trials are merited.
Resumo:
Green tea (Camellia sinensis) has shown to exert cardioprotective benefits in observational studies. The objective of this clinical trial was to assess the effects of green tea on features of metabolic syndrome and inflammation in obese subjects.
Resumo:
Because endothelial cell dysfunction and inflammation are key contributors to the development of complications in type 1 diabetes, we studied risk factors related to endothelial dysfunction and inflammation (C-reactive protein and fibrinogen, soluble vascular cell adhesion molecule-1, intracellular adhesion molecule-1, and E-selectin, and fibrinolytic markers) in a subgroup of patients from the Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Intervention and Complications (EDIC) study cohort.
Resumo:
Oxidized and/or glycated low-density lipoprotein (LDL) may mediate capillary injury in diabetic retinopathy. The mechanisms may involve pro-inflammatory and pro-oxidant effects on retinal capillary pericytes. In this study, these effects, and the protective effects of pigment epithelium-derived factor (PEDF), were defined in a primary human pericyte model. Human retinal pericytes were exposed to 100 microg/ml native LDL (N-LDL) or heavily oxidized glycated LDL (HOG-LDL) with or without PEDF at 10-160 nM for 24 h. To assess pro-inflammatory effects, monocyte chemoattractant protein-1 (MCP-1) secretion was measured by ELISA, and nuclear factor-kappaB (NF-kappaB) activation was detected by immunocytochemistry. Oxidative stress was determined by measuring intracellular reactive oxygen species (ROS), peroxynitrite (ONOO(-)) formation, inducible nitric oxide synthase (iNOS) expression, and nitric oxide (NO) production. The results showed that MCP-1 was significantly increased by HOG-LDL, and the effect was attenuated by PEDF in a dose-dependent manner. PEDF also attenuated the HOG-LDL-induced NF-kappaB activation, suggesting that the inhibitory effect of PEDF on MCP-1 was at least partially through the blockade of NF-kappaB activation. Further studies demonstrated that HOG-LDL, but not N-LDL, significantly increased ONOO(-) formation, NO production, and iNOS expression. These changes were also alleviated by PEDF. Moreover, PEDF significantly ameliorated HOG-LDL-induced ROS generation through up-regulation of superoxide dismutase 1 expression. Taken together, these results demonstrate pro-inflammatory and pro-oxidant effects of HOG-LDL on retinal pericytes, which were effectively ameliorated by PEDF. Suppressing MCP-1 production and thus inhibiting macrophage recruitment may represent a new mechanism for the salutary effect of PEDF in diabetic retinopathy and warrants more studies in future.
Resumo:
Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes. HDL plays an important role in limiting vascular damage by removing cholesterol and cholesteryl ester hydroperoxides from oxidized low density lipoprotein and foam cells. Methionine (Met) residues in apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, reduce peroxides in HDL lipids, forming methionine sulfoxide [Met(O)]. We examined the extent and sites of Met(O) formation in apoA-I of HDL isolated from plasma of healthy control and type 1 diabetic subjects to assess apoA-I exposure to lipid peroxides and the status of oxidative stress in the vascular compartment in diabetes. Three tryptic peptides of apoA-I contain Met residues: Q(84)-M(86)-K(88), W(108)-M(112)-R(116), and L(144)-M(148)-R(149). These peptides and their Met(O) analogs were identified and quantified by mass spectrometry. Relative to controls, Met(O) formation was significantly increased at all three locations (Met(86), Met(112), and Met(148)) in diabetic patients. The increase in Met(O) in the diabetic group did not correlate with other biomarkers of oxidative stress, such as N(epsilon)-malondialdehyde-lysine or N(epsilon)-(carboxymethyl)lysine, in plasma or lipoproteins. The higher Met(O) content in apoA-I from diabetic patients is consistent with increased levels of lipid peroxidation products in plasma in diabetes. Using the methods developed here, future studies can address the relationship between Met(O) in apoA-I and the risk, development, or progression of the vascular complications of diabetes.