187 resultados para Pollen tube pathway


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ovarian cancer is the most lethal gynecological malignancy, primarily because its origin and initiation factors are unknown. A secretory murine oviductal epithelial (MOE) model was generated to address the hypothesis that the fallopian tube is an origin for high-grade serous cancer. MOE cells were stably altered to express mutation in p53, silence PTEN, activate AKT, and amplify KRAS alone and in combination, to define if this cell type gives rise to tumors and what genetic alterations are required to drive malignancy. Cell lines were characterized in vitro and allografted into mice. Silencing PTEN formed high-grade carcinoma with wide spread tumor explants including metastasis into the ovary. Addition of p53 mutation to PTEN silencing did not enhance this phenotype, whereas addition of KRAS mutation reduced survival. Interestingly, PTEN silencing and KRAS mutation originating from ovarian surface epithelium generated endometrioid carcinoma, suggesting that different cellular origins with identical genetic manipulations can give rise to distinct cancer histotypes. Defining the roles of specific signaling modifications in tumorigenesis from the fallopian tube/oviduct is essential for early detection and development of targeted therapeutics. Further, syngeneic MOE allografts provide an ideal model for pre-clinical testing in an in vivo environment with an intact immune system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Ovarian cancer is the most lethal gynecological malignancy that affects women. Recent data suggests that the disease may originate in the fallopian fimbriae; however, the anatomical origin of ovarian carcinogenesis remains unclear. This is largely driven by our lack of knowledge regarding the structure and function of normal fimbriae and the relative paucity of models that accurately recapitulate the in vivo fallopian tube. Therefore, a human three-dimensional (3D) culture system was developed to examine the role of the fallopian fimbriae in serous tumorigenesis.

METHODS: Alginate matrix was utilized to support human fallopian fimbriae ex vivo. Fimbriae were cultured with factors hypothesized to contribute to carcinogenesis, namely; H2O2 (1mM) a mimetic of oxidative stress, insulin (5μg/ml) to stimulate glycolysis, and estradiol (E2, 10nM) which peaks before ovulation. Cultures were evaluated for changes in proliferation and p53 expression, criteria utilized to identify potential precursor lesions. Further, secretory factors were assessed after treatment with E2 to identify if steroid signaling induces a pro-tumorigenic microenvironment.

RESULTS: 3D fimbriae cultures maintained normal tissue architecture up to 7days, retaining both epithelial subtypes. Treatment of cultures with H2O2 or insulin significantly induced proliferation. However, p53 stabilization was unaffected by any particular treatment, although it was induced by ex vivo culturing. Moreover, E2-alone treatment significantly induced its canonical target PR and expression of IL8, a factor linked to poor outcome.

CONCLUSIONS: 3D alginate cultures of human fallopian fimbriae provide an important microphysiological model, which can be further utilized to investigate serous tumorigenesis originating from the fallopian tube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The ovarian surface epithelium responds to cytokines and hormonal cues to initiate proliferation and migration following ovulation. Although insulin and IGF are potent proliferative factors for the ovarian surface epithelium and IGF is required for follicle development, increased insulin and IGF activity are correlated with at least two gynecologic conditions: polycystic ovary syndrome and epithelial ovarian cancer. Although insulin and IGF are often components of in vitro culture media, little is known about the effects that these growth factors may have on the ovarian surface epithelium morphology or how signaling in the ovarian surface may affect follicular health and development.

METHODS: Ovaries from CD1 mice were cultured in alginate hydrogels in the presence or absence of 5 μg/ml insulin or IGF-I, as well as small molecule inhibitors of IR/IGF1R, PI 3-kinase signaling, or MAPK signaling. Tissues were analyzed by immunohistochemistry for expression of cytokeratin 8 to mark the ovarian surface epithelium, Müllerian inhibiting substance to mark secondary follicles, and BrdU incorporation to assess proliferation. Changes in gene expression in the ovarian surface epithelium in response to insulin or IGF-I were analyzed by transcription array. Extracellular matrix organization was evaluated by expression and localization of collagen IV.

RESULTS: Culture of ovarian organoids with insulin or IGF-I resulted in formation of hyperplastic OSE approximately 4-6 cell layers thick with a high rate of proliferation, as well as decreased MIS expression in secondary follicles. Inhibition of the MAPK pathway restored MIS expression reduced by insulin but only partially restored normal OSE growth and morphology. Inhibition of the PI 3-kinase pathway restored MIS expression reduced by IGF-I and restored OSE growth to a single cell layer. Insulin and IGF-I altered organization of collagen IV, which was restored by inhibition of PI 3-kinase signaling.

CONCLUSIONS: While insulin and IGF are often required for propagation of primary cells, these cytokines may act as potent mitogens to disrupt cell growth, resulting in formation of hyperplastic OSE and decreased follicular integrity as measured by MIS expression and collagen deposition. This may be due partly to altered collagen IV deposition and organization in the ovary in response to insulin and IGF signaling mediated by PI 3-kinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of complex cellular responses to diverse stimuli can be studied by the use of emerging chip-based technologies.

The p53 pathway is critical to maintaining the integrity of the genome in multicellular organisms. The p53gene is activated in response to DNA damage and encodes a transcription factor [1], which in turn activates genes that arrest cell growth and induce apoptosis, thereby preventing the propagation of genetically damaged cells. It is the most important known tumor suppressor gene: perhaps half of all human neoplasms have mutations in p53, and there is a remarkable concordance between oncogenic mutation and the loss of p53 transcriptional activity [2]. There is also compelling experimental evidence that loss of p53 function (by whatever means) is one of the key oncogenic steps in human cells, along with altered telomerase activity and expression of mutant ras [3]. So far, however, relatively few of the genes regulated by p53 have been identified and it is not even known how many binding sites there are for p53 in the genome, although an estimate based on the incidence of the canonical p53 consensus binding site (four palindromic copies of the sequence 5'-PuPuPuGA/T-3', where Pu is either purine) in a limited region suggests there may be as many as 200 to 300, possibly representing the same number of p53-responsive genes [4]. This makes the p53 response an attractive target for the emerging techniques for global analysis of gene expression, and two recent reports [5,6] illustrate the ways in which these techniques can be used to elucidate the spectrum of genes regulated by this key transcription factor. Vogelstein and colleagues [5] have used serial analysis of gene expression (SAGE) to identify 34 genes that exhibit at least a 10-fold upregulation in response to inducible expression of p53; Tanaka et al. [6] have used differential display to identify p53R2, a homolog of ribonuclease reductase small subunit (R2) as a target gene, thereby for the first time implicating p53 directly in the repair of DNA damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta superfamily, induces regression of the Müllerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G(1) phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFkappaB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IkappaBalpha expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFkappaB signaling pathway was required for these processes. These results identify the NFkappaB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mullerian inhibiting substance (MIS), a member of the transforming growth factor-β superfamily, induces regression of the Mullerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G1 phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFκB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IκBα expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFκB signaling pathway was required for these processes. These results identify the NFκB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltage-dependent calcium channels (VDCCs) are key elements in epileptogenesis. There are several binding-sites linked to calmodulin (CaM) and several potential CaM-dependent protein kinase II (CaMKII)-mediated phosphorylation sites in CaV1.2. The tremor rat model (TRM) exhibits absence‑like seizures from 8 weeks of age. The present study was performed to detect changes in the Ca2+/CaV1.2/CaM/CaMKII pathway in TRMs and in cultured hippocampal neurons exposed to Mg2+‑free solution. The expression levels of CaV1.2, CaM and phosphorylated CaMKII (p‑CaMKII; Thr‑286) in these two models were examined using immunofluorescence and western blotting. Compared with Wistar rats, the expression levels of CaV1.2 and CaM were increased, and the expression of p‑CaMKII was decreased in the TRM hippocampus. However, the expression of the targeted proteins was reversed in the TRM temporal cortex. A significant increase in the expression of CaM and decrease in the expression of CaV1.2 were observed in the TRM cerebellum. In the cultured neuron model, p‑CaMKII and CaV1.2 were markedly decreased. In addition, neurons exhibiting co‑localized expression of CaV1.2 and CaM immunoreactivities were detected. Furthermore, intracellular calcium concentrations were increased in these two models. For the first time, o the best of our knowledge, the data of the present study suggested that abnormal alterations in the Ca2+/CaV1.2/CaM/CaMKII pathway may be involved in epileptogenesis and in the phenotypes of TRMs and cultured hippocampal neurons exposed to Mg2+‑free solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an analytical solution for the solid stresses in a silo with an internal tube. The research was conducted to support the design of a group of full scale silos with large inner concrete tubes. The silos were blasted and formed out of solid rock underground for storing iron ore pellets. Each of these silos is 40m in diameter and has a 10m diameter concrete tube with five levels of openings constructed at the centre of each rock silo. A large scale model was constructed to investigate the stress regime for the stored pellets and to evaluate the solids flow pattern and the loading on the concrete tube. This paper focuses on the development of an analytical solution for stresses in the iron ore pellets in the silo and the effect of the central tube on the stress regimes. The solution is verified using finite element analysis before being applied to analyse stresses in the solid in the full scale silo and the effect of the size of the tube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycosis fungoides (MF) is the most frequent type of cutaneous T-cell lymphoma, whose diagnosis and study is hampered by its morphologic similarity to inflammatory dermatoses (ID) and the low proportion of tumoral cells, which often account for only 5% to 10% of the total tissue cells. cDNA microarray studies using the CNIO OncoChip of 29 MF and 11 ID cases revealed a signature of 27 genes implicated in the tumorigenesis of MF, including tumor necrosis factor receptor (TNFR)-dependent apoptosis regulators, STAT4, CD40L, and other oncogenes and apoptosis inhibitors. Subsequently a 6-gene prediction model was constructed that is capable of distinguishing MF and ID cases with unprecedented accuracy. This model correctly predicted the class of 97% of cases in a blind test validation using 24 MF patients with low clinical stages. Unsupervised hierarchic clustering has revealed 2 major subclasses of MF, one of which tends to include more aggressive-type MF cases including tumoral MF forms. Furthermore, signatures associated with abnormal immunophenotype (11 genes) and tumor stage disease (5 genes) were identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mitogen-activated protein (MAP) kinase family is activated in response to a wide variety of external stress signals such as UV irradiation, heat shock, and many chemotherapeutic drugs and leads to the induction of apoptosis. A novel series of pyrrolo-1,5-benzoxazepines have been shown to potently induce apoptosis in chronic myelogenous leukemia (CML) cells, which are resistant to many chemotherapeutic agents. In this study we have delineated part of the mechanism by which a representative compound known as PBOX-6 induces apoptosis. We have investigated whether PBOX-6 induces activation of MAP kinase signaling pathways in CML cells. Treatment of K562 cells with PBOX-6 resulted in the transient activation of two JNK isoforms, JNK1 and JNK2. In contrast, PBOX-6 did not activate the extracellular signal-regulated kinase (ERK) or p38. Apoptosis was found to occur independently of the small GTPases Ras, Rac, and Cdc42 but involved phosphorylation of the JNK substrates, c-Jun and ATF-2. Pretreatment of K562 cells with the JNK inhibitor, dicoumarol, abolished PBOX-6-induced phosphorylation of c-Jun and ATF-2 and inhibited the induced apoptosis, suggesting that JNK activation is an essential component of the apoptotic pathway induced by PBOX-6. Consistent with this finding, transfection of K562 cells with the JNK scaffold protein, JIP-1, inhibited JNK activity and apoptosis induced by PBOX-6. JIP-1 specifically scaffolds JNK, MKK7, and members of the mixed-lineage kinase (MLK) family, implicating these kinases upstream of JNK in the apoptotic pathway induced by PBOX-6 in K562 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The semiconductor photocatalysed (SPC) oxidation of toluene is performed inside an NMR spectrometer and the reaction monitored simultaneously in-situ, using a fibre optic probe/diffuser to provide the UV light to activate the titania photocatalyst coating on the inside of the NMR tube. Such a system has great potential for the simple rapid screening of a wide range of SPC mediated organic reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of decellularised scaffolds for small diameter vascular grafts is hampered by their limited patency, due to the lack of luminal cell coverage by endothelial cells (EC) and to the low tone of the vessel due to absence of a contractile smooth muscle cells (SMC). In this study, we identify a population of vascular progenitor c-Kit+/Sca-1- cells available in large numbers and derived from immuno-privileged embryonic stem cells (ESCs). We also define an efficient and controlled differentiation protocol yielding fully to differentiated ECs and SMCs in sufficient numbers to allow the repopulation of a tissue engineered vascular graft. When seeded ex vivo on a decellularised vessel, c-Kit+/Sca-1-derived cells recapitulated the native vessel structure and upon in vivo implantation in the mouse, markedly reduced neointima formation and mortality, restoring functional vascularisation. We showed that Krüppel-like transcription factor 4 (Klf4) regulates the choice of differentiation pathway of these cells through β-catenin activation and was itself regulated by the canonical Wnt pathway activator lithium chloride. Our data show that ESC-derived c-Kit+/Sca-1-cells can be differentiated through a Klf4/β-catenin dependent pathway and are a suitable source of vascular progenitors for the creation of superior tissue-engineered vessels from decellularised scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Worldwide, colorectal cancer has a higher incidence rate in men than in women, suggesting a protective role for sex hormones in the development of the disease. Preclinical data support a role for estrogen and its receptors in the initiation and progression of colorectal cancer and establishes that protective effects of estrogen are exerted through ERβ. Hormone replacement therapy (HRT) in postmenopausal women as well as consumption of soy reduces the incidence of colorectal cancer. In the Women's Health Initiative trial, use of HRT in postmenopausal women reduced the risk of colon cancer by 56% [95% confidence interval (CI), 0.38-0.81; P = 0.003]. A recent meta-analysis showed that in women, consumption of soy reduced the risk of colon cancer by 21% (95% CI, 0.03-0.35; P = 0.026). In this review, using the preclinical data, we translate the findings in the clinical trials and observational studies to define the role of estrogen in the prevention of colorectal cancer. We hypothesize that sometime during the tumorigenesis process ERβ expression in colonocytes is lost and the estrogen ligand, HRT, or soy products, exerts its effects through preventing this loss. Thus, in the adenoma-to-carcinoma continuum, timing of HRT is a significant determinant of the observed benefit from this intervention. We further argue that the protective effects of estrogen are limited to certain molecular subtypes. Successful development of estrogen modulators for prevention of colorectal cancer depends on identification of susceptible colorectal cancer population(s). Thus, research to better understand the estrogen pathway is fundamental for clinical delivery of these agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wnt/β-catenin signaling has a central role in the development and progression of most colon cancers (CCs). Germline variants in Wnt/β-catenin pathway genes may result in altered gene function and/or activity, thereby causing inter-individual differences in relation to tumor recurrence capacity and chemoresistance. We investigated germline polymorphisms in a comprehensive panel of Wnt/β-catenin pathway genes to predict time to tumor recurrence (TTR) in patients with stage III and high-risk stage II CC. A total of 234 patients treated with 5-fluorouracil-based chemotherapy were included in this study. Whole-blood samples were analyzed for putative functional germline polymorphisms in SFRP3, SFRP4, DKK2, DKK3, Axin2, APC, TCF7L2, WNT5B, CXXC4, NOTCH2 and GLI1 genes by PCR-based restriction fragment-length polymorphism or direct DNA sequencing. Polymorphisms with statistical significance were validated in an independent study cohort. The minor allele of WNT5B rs2010851 T>G was significantly associated with a shorter TTR (10.7 vs 4.9 years; hazard ratio: 2.48; 95% CI, 0.96-6.38; P=0.04) in high-risk stage II CC patients. This result remained significant in multivariate Cox's regression analysis. This study shows that the WNT5B germline variant rs2010851 was significantly identified as a stage-dependent prognostic marker for CC patients after 5-fluorouracil-based adjuvant therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commentary on: Ramasamy Venkatasalu M, Whiting D, Cairnduff K. Life after the Liverpool Care Pathway (LCP): a qualitative study of critical care practitioners delivering end-of-life care. J Adv Nurs 2015;71:2108–18.