240 resultados para Cytoplasmic-binding
Resumo:
The aerobactin gene cluster in pColV-K30 consists of five genes (iucABCD iutA); four of these (iucABCD) are involved in aerobactin biosynthesis, whereas the fifth one (iutA) encodes the ferriaerobactin outer membrane receptor. iucD encodes lysine:N6-hydroxylase, which catalyzes the first step in aerobactin biosynthesis. Regardless of the method used for cell rupture, we have consistently found that IucD remains membrane bound, and repeated efforts to achieve a purified and active soluble form of the enzyme have been unsuccessful. To circumvent this problem, we have constructed recombinant IucD proteins with modified amino termini by creating three in-frame gene fusions of IucD to the amino-terminal amino acids of the cytoplasmic enzyme beta-galactosidase. Two of these constructs resulted in the addition to the iucD coding region of a hydrophilic leader sequence of 13 and 30 amino acids. The other construct involved the deletion of the first 47 amino acids of the IucD amino terminus and the addition of 19 amino acids of the amino terminus of beta-galactosidase. Cells expressing any of the three recombinant IucD forms were found to produce soluble N6-hydroxylysine. One of these proteins, IucD439, was purified to homogeneity from the soluble fraction of the cell lysates, and it was capable of participating in the biosynthesis of aerobactin, as determined in vitro by a cell-free system and in vivo by a cross-feeding bioassay. A medium ionic strength of 0.25 (250 mM NaCl) or higher was required to maintain the protein in a catalytically functional, tetrameric state.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Modified DNA strands undergo a reversible light-induced reaction involving the intramolecular photodimerization of two appended anthracene tags. The photodimers exhibit markedly different binding behavior toward a complementary strand that depends on the number of bases between the modified positions. By preforming the duplex, photochromism can be suppressed, illustrating dual-mode gated behavior.
Resumo:
In trematodes, there is a family of proteins which combine EF-hand-containing domains with dynein light chain (DLC)-like domains. A member of this family from the liver fluke, Fasciola hepatica-FhCaBP4-has been identified and characterised biochemically. FhCaBP4 has an N-terminal domain containing two imperfect EF-hand sequences and a C-terminal dynein light chain-like domain. Molecular modelling predicted that the two domains are joined by a flexible linker. Native gel electrophoresis demonstrated that FhCaBP4 binds to calcium, manganese, barium and strontium ions, but not to magnesium or zinc ions. The hydrophobic, fluorescent probe 8-anilinonaphthalene-1-sulphonate bound more tightly to FhCaBP4 in the presence of calcium ions. This suggests that the protein undergoes a conformational change on ion binding which increases the number of non-polar residues on the surface. FhCaBP4 was protected from limited proteolysis by the calmodulin antagonist W7, but not by trifluoperazine or praziquantel. Protein-protein cross-linking experiments showed that FhCaBP4 underwent calcium ion-dependent dimerisation. Since DLCs are commonly dimeric, it is likely that FhCaBP4 dimerises through this domain. The molecular model reveals that the calcium ion-binding site is located close to a key sequence in the DLC-like domain, suggesting a plausible mechanism for calcium-dependent dimerisation.
Resumo:
Described here is a proposed experiment to use laser-assisted photorecombination of positrons from a trap-based beam and metal atoms in the gas phase to measure positron-atom binding energies. Signal rates are estimated, based in part upon experience studying resonant annihilation spectra using a trapbased positron beam. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
Computer-aided drug design becomes an important part of G-protein coupled receptors (GPCR) drug discovery process that is applied for improving the efficiency of derivation and optimization of novel ligands. It represents the combination of methods that-use-structural information of a receptor binding site of known ligands to design new ligands. In this report, we give a brief description of ligand binding sites in cholecystokinin and gastrin receptors (CK1R and CCK2R) which were delineated using experimental and computational methods, and then, we show how the validated ligand binding sites can be used to design and improve novel ligands. The translation of the knowledge of ligand-binding sites of different GPCRs to computer-aided design of novel ligands is summarized.
Resumo:
Using the molecular-graphic complex Sybyl6.7.2, computational construction of spatial models for N-terminal domains (of NR1- and NR2B-subunits) of NMDA-receptor was conducted. On the basis of the constructed models and also CoMFA method the conclusion is made about presence of the binding site for the compounds similar to iphenprodyl in two N-terminal domains of NR1- and NR2B-subunits. The obtained data can be used for constructing new ligands.
Resumo:
The computer molecular docking of piperonyl acid piperidide (BDP) and some its analogs already known as ampakins was conducted for estimating their possible binding with AMPA-receptor glutamate domains in cyclothiazide binding area and for further design of new structures maximally complimentary to the receptor. On the base of the conducted docking it can be suggested that the binding site of BDP (amides of benzodioxane-6-carboxylic and piperonyl acids) analogs is located in AMPA-receptor cyclothiazide binding pocket. It is shown that formation of protein-ligand complexes of AMPA-receptor with benzodioxane-6-carboxylic and piperonyl acid derivatives, similarly to cyclothiazide, proceeds with interaction with Ser497, Leu751, which significance is confirmed by site-specific mutagenesis.
Resumo:
Homology modeling was used to build 3D models of the N-methyl-D-aspartate (NMDA) receptor glycine binding site on the basis of an X-ray structure of the water-soluble AMPA-sensitive receptor. The docking of agonists and antagonists to these models was used to reveal binding modes of ligands and to explain known structure-activity relationships. Two types of quantitative models, 3D-QSAR/CoMFA and a regression model based on docking energies, were built for antagonists (derivatives of 4-hydroxy-2-quinolone, quinoxaline-2,3-dione, and related compounds). The CoMFA steric and electrostatic maps were superimposed on the homology-based model, and a close correspondence was marked. The derived computational models have permitted the evaluation of the structural features crucial for high glycine binding site affinity and are important for the design of new ligands.
Resumo:
We present new homology-based models of the glutamate binding site (in closed and open forms) of the NMDA receptor NR2B subunit derived from X-ray structures of the water soluble AMPA sensitive glutamate receptor. The models were used for revealing binding modes of agonists and competitive antagonists, as well as for rationalizing known experimental facts concerning structure-activity relationships: (i) the switching between the agonist and the antagonist modes of action upon lengthening the chain between the distal acidic group and the amino acid moiety, (ii) the preference for the methyl group attached to the a-amino group of ligands, (iii) the preference for the D-configuration of agonists and antagonists, and (iv) the existence of "superacidic" agonists.
Resumo:
OBJECTIVES:
Quaternary ammonium compounds (QACs) are used extensively as biocides and their misuse may be contributing to the development of bacterial resistance. Although the major intrinsic resistance to QACs of Gram-negative bacteria is mediated by the action of tripartite multidrug transporters of the resistance-nodulation-division family, we aimed to test if the promiscuity of the recently characterized major facilitator superfamily multidrug transporter, MdtM, from Escherichia coli enabled it also to function in the efflux of QACs.
METHODS:
The ability of the major facilitator mdtM gene product, when overexpressed from multicopy plasmid, to protect E. coli cells from the toxic effects of a panel of seven QACs was determined using growth inhibition assays in liquid medium. Interaction between QACs and MdtM was studied by a combination of substrate binding assays using purified protein in detergent solution and transport assays using inverted vesicles.
RESULTS:
E. coli cells that overproduced MdtM were less susceptible to the cytotoxic effects of each of the QACs tested compared with cells that did not overproduce the transporter. Purified MdtM bound each QAC with micromolar affinity and the protein utilized the electrochemical proton gradient to transport QACs across the cytoplasmic membrane. Furthermore, the results suggested a functional interaction between MdtM and the tripartite resistance-nodulation-division family AcrAB-TolC efflux system.
CONCLUSIONS:
The results support a hitherto unidentified capacity for a single-component multidrug transporter of the major facilitator superfamily, MdtM, to function in the efflux of a broad range of QACs and thus contribute to the intrinsic resistance of E. coli to these compounds.
Resumo:
Deficiency of UDP-galactose 4'-epimerase is implicated in type III galactosemia. Two variants, p.K161N-hGALE and p.D175N-hGALE, have been previously found in combination with other alleles in patients with a mild form of the disease. Both variants were studied in vivo and in vitro and showed different levels of impairment. p.K161N-hGALE was severely impaired with substantially reduced enzymatic activity, increased thermal stability, reduced cofactor binding and no ability to rescue the galactose-sensitivity of gal10-null yeast. Interestingly p.K161N-hGALE showed less impairment of activity with UDP-N-acetylgalactosamine in comparison to UDP-galactose. Differential scanning fluorimetry revealed that p.K161N-hGALE was more stable than the wild-type protein and only changed stability in the presence of UDP-N-acetylglucosamine and NAD(+). p.D175N-hGALE essentially rescued the galactose-sensitivity of gal10-null yeast, was less stable than the wild-type protein but showed increased stability in the presence of substrates and cofactor. We postulate that p.K161N-hGALE causes its effects by abolishing an important interaction between the protein and the cofactor, whereas p.D175N-hGALE is predicted to remove a stabilizing salt bridge between the ends of two a-helices that contain residues that interact with NAD(+). These results suggest that the cofactor binding is dynamic and that its loss results in significant structural changes that may be important in disease causation.
Resumo:
Purpose:This study documents the frequency of insulin-like growth factor-II (IGF-II) loss of imprinting (LOI) in a series of 87 bladder tissues. E-cadherin (CDH1) immunolocalization was also investigated due to the known redistribution of this adherence protein to the cytoplasm following exogenous exposure to IGF-II.
Experimental Design: Informative IGF-II cases were identified following DNA-PCR amplification and subsequent sequencing of the transcribable ApaI RFLP in exon 9 of IGF-II. Similar approaches using primer-specific cDNA templates identified the imprinting status of IGF-II in these informative cases. CDH1cellular localization was assessed on a tissue microarray platform of 114 urothelial carcinoma of the bladder (UCB) cases (70 pTanoninvasive and 44 pT1laminapropria invasive) using the commercially available Novocastra antibody.
Results: IGF-IILOI was evident in 7 of17 (41%) UCB tumors and 4 of11 (36%) tumor-associated normal urothelial samples.Two of four pT1grade 3 tumors, the subject of much debate concerning their suitability for radical cystectomy, showed LOI at the IGF-II locus. In those tumors showing IGF-II LOI, 4 of 7 (57%) displayed concomitant CDH1cytoplasmic staining. In contrast, only 3 of 10 (30%) IGF-IImaintenance ofimprinting tumorshad concomitant CDH1cytoplasmiclocalization. UCB cell lines displaying cytoplasmic CDH1immunolocalization expressed significantly higher levels of IGF-II (CAL29, HT1376, and RT112) compared with RT4, a cell line displaying crisp membranous CDH1staining. Finally, cytoplasmic CDH1staining was an independent predictor of a shorter time to recurrence independent of tumor grade and stage.
Conclusions: We suggest that CDH1 cytoplasmic immunolocalization as a result of increased IGF-II levels identifies those nonmuscle invasive presentations most likely to recur and therefore might benefit from more radical nonconserving bladder surgery
Resumo:
Connective tissue growth factor (CTGF/CCN2) is a 38-kDa secreted protein, a prototypic member of the CCN family, which is up-regulated in many diseases, including atherosclerosis, pulmonary fibrosis, and diabetic nephropathy. We previously showed that CTGF can cause actin disassembly with concurrent down-regulation of the small GTPase Rho A and proposed an integrated signaling network connecting focal adhesion dissolution and actin disassembly with cell polarization and migration. Here, we further delineate the role of CTGF in cell migration and actin disassembly in human mesangial cells, a primary target in the development of renal glomerulosclerosis. The functional response of mesangial cells to treatment with CTGF was associated with the phosphorylation of Akt/protein kinase B (PKB) and resultant phosphorylation of a number of Akt/PKB substrates. Two of these substrates were identified as FKHR and p27(Kip-1). CTGF stimulated the phosphorylation and cytoplasmic translocation of p27(Kip-1) on serine 10. Addition of the PI-3 kinase inhibitor LY294002 abrogated this response; moreover, addition of the Akt/PKB inhibitor interleukin (IL)-6-hydroxymethyl-chiro-inositol-2(R)-2-methyl-3-O-octadecylcarbonate prevented p27(Kip-1) phosphorylation in response to CTGF. Immunocytochemistry revealed that serine 10 phosphorylated p27(Kip-1) colocalized with the ends of actin filaments in cells treated with CTGF. Further investigation of other Akt/PKB sites on p27(Kip-1), revealed that phosphorylation on threonine 157 was necessary for CTGF mediated p27(Kip-1) cytoplasmic localization; mutation of the threonine 157 site prevented cytoplasmic localization, protected against actin disassembly and inhibited cell migration. CTGF also stimulated an increased association between Rho A and p27(Kip-1). Interestingly, this resulted in an increase in phosphorylation of LIM kinase and subsequent phosphorylation of cofilin, suggesting that CTGF mediated p27(Kip-1) activation results in uncoupling of the Rho A/LIM kinase/cofilin pathway. Confirming the central role of Akt/PKB, CTGF-stimulated actin depolymerization only in wild-type mouse embryonic fibroblasts (MEFs) compared to Akt-1/3 (PKB alpha/gamma) knockout MEFs. These data reveal important mechanistic insights into how CTGF may contribute to mesangial cell dysfunction in the diabetic milieu and sheds new light on the proposed role of p27(Kip-1) as a mediator of actin rearrangement.