241 resultados para A-SITE CATION
Resumo:
Malone, C. and S. Stoddart, Papers of the British School at Rome, 1992. 60: p. 1-69.
Resumo:
This paper considers the evolution of Homo sapiens in eastern Africa in relation to refugia and bottlenecks around ~200 ka BP, at a macro scale. Middle Stone Age (MSA) lithics, site distributions and locations are analysed in relation to palaeovegetation maps of the last glacial/interglacial cycle, which are used as a proxy for earlier climate cycles. A ‘‘push and pull’’ model is then postulated for the spread of Homo sapiens out of refugia in eastern Africa, involving both volcanism (push) and habitat availability (pull). A date within OIS 5 is suggested for this expansion to other parts of the continent, and potentially further a?eld, contrary to a frequently proposed expansion within OIS 3. ©2008 Elsevier Ltd. All rights reserved.
Resumo:
With the increase in construction in dense urban environments, the delays associated with managing the material supply chain to site is called into question. Purpose: The aim of this investigation is to gain the perspective of construction contractors operating in a dense urban environment and the resulting strategies adopted to reduce delays in the delivery of materials to site. Methodology: This is achieved through incorporating a comprehensive literature review on the subject in conjunction with industry interviews with construction professionals in the identification of various management issues and corresponding strategies in the reduction of delays in the delivery of materials to site. Findings: The key issue which emerges is the lack of space for unloading bays while the corresponding key strategy is to schedule deliveries outside peak congestion times. Practical Implication: With confined site construction evident throughout the industry and the noted importance of an effective supply chain, the findings here in further assist on-site management in the daily task of ensuring the effective delivery and off-loading of materials in a complex and hazardous environment. Originality/Value: This research aids on-site management of confined site environments in the coordination of the material supply chain to site.
Resumo:
Inner city, confined site construction is quickly becoming the norm within the construction sector. The aim of this paper is to identify and document the effect, if any, that a confined construction site environment has on the productivity of on-site personnel. In order to compile the relevant information and attain appropriate results on the matter in question, a qualitative analytical approach is adopted. This process incorporates multiple cases studies from Ireland, Northern Ireland and USA. From the resulting case studies, a minimum of three individual interviews and focus group seminars are conducted to aid in the collection of the data while also assisting in the confirmation of the factors identified from a critique of the relevant literature. From the resulting case studies and discussions, a list of the key issues pertaining to the on-site productivity of personnel emerged and is documented as follows; 1) Overcrowding of personnel at workstations, 2) Lack of space for the effective movement of personnel on-site, 3) Numerous trades working within the one space on-site. Through identifying the issues highlighted and proactively mitigating or eliminating the factors detailed, on-site management professionals can strive to ensure maximum productivity from the industry’s most important resource – people.
Resumo:
The objective of this paper is to identify various managerial issues encountered and resulting strategies adopted, with regards management of materials on confined construction site. This is achieved through classifying the various managerial burdens encountered with the numerous strategies adopted, for the successful management of such confined environments within the realm of materials management.
Through conducting an extensive literature review and detailed interviews, a comprehensive insight into the materials management concerns within a confined construction site environment is envisaged and portrayed. The following are the leading issues highlighted; (1)Lack of adequate storage space, (2)Work place becoming over-crowded, (3)Lack of adequate room for the effective handling of materials and (4)Difficult to transport materials around site. The leading managerial strategies to the management of materials on confined construction sites may be listed in order of importance, as follows; (1)Pre-fabrication and pre-assembly, (2)Providing adequate storage, (3)Space scheduling, (4)Just-In-Time delivery techniques, and (5)Effective design site layout.
Based on the research conducted, it can be concluded, that through effective management of the issues identified along with implementing the various strategies highlighted; successful materials management within a confined construction site environment is attainable.
Innovative Aspect of Paper: An empirical study of three different construction sites in three different countries (Ireland, England and USA) investigating the managerial issues and strategies relating to implementation of materials management in confined construction sites.
Resumo:
Thousands of Neolithic and Bronze Age open-air rock art panels exist across the countryside in northern England. However, desecration, pollution, and other factors are threatening the survival of these iconic stone monuments. Evidence suggest that rates of panel deterioration may be increasing, although it is not clear whether this is due to local factors or wider environmental influences accelerated by environmental change. To examine this question, 18 rock art panels with varied art motifs were studied at two major panel locations at Lordenshaw and Weetwood Moor in Northumberland. A condition assessment
tool was used to first quantify the level of deterioration of each panel (called “staging”). Stage estimates then were compared statistically with 27 geochemical and physical descriptors of local environments, such as soil moisture, salinity, pH, lichen coverage, soil anions and cation levels, and panel orientation, slope, and standing height. In parallel, climate modelling was performed using UKCP09 to assess how projected climatic conditions (to 2099) might affect the environmental descriptors most correlated with elevated stone deterioration. Only two descriptors significantly correlated (P < 0.05) with increased stage: the standing height of the panel and the exchangeable cation content of the local soils, although moisture conditions also were potentially influential at some panels. Climate modelling predicts warming temperatures, more seasonally variable precipitation, and increased wind speeds, which hint stone deterioration could accelerate in the future due to increased physiochemical weathering. We recommend key panels be targeted for immediate management intervention, focusing on reducing wind exposures, improving site drainage, and potentially immobilizing soil salts.
Resumo:
The SWAT (Study Within A Trial) programme has been established to develop a series of studies that would embed research within research, so as to resolve uncertainties about the effects of different ways of designing, conducting, analyzing and interpreting evaluations of health and social care. It was described in an Education piece in the Journal of Evidence-Based Medicine in 2012. We have now prepared the first example of the design summary for a SWAT, using the template that will be used for other SWAT. This is presented in this article.
Resumo:
Contaminants discharging from on-site wastewater treatment systems (OSWTSs) can impact groundwater quality, threatening human health and surface water ecosystems. Risk of negative impacts becomes elevated in areas of extreme vulnerability with high water tables, where thin unsaturated intervals limit vadose zone attenuation. A combined geophysical/hydrogeological investigation into the effects of an OSWTS, located over a poorly productive aquifer (PPA) with thin subsoil cover, aimed to characterise effluent impacts on groundwater. Groundwater, sampled from piezometers down-gradient of the OSWTS percolation area displayed spatially erratic, yet temporally consistent, contaminant distributions. Electrical resistivity tomography identified an area of gross groundwater contamination close to the percolation area and, when combined with seismic refraction and water quality data, indicated that infiltrating effluent reaching the water table discharged to a deeper more permeable zone of weathered shale resting on more competent bedrock. Subsurface structure, defined by geophysics, indicated that elevated chemical and microbiological contaminant levels encountered in groundwater samples collected from piezometers, down-gradient of sampling points with lower contaminant levels, corresponded to those locations where piezometers were screened close to the weathered shale/competent rock interface; those immediately up-gradient were too shallow to intercept this interval, and thus the more impacted zone of the contaminant plume. Intermittent occurrence of faecal indicator bacteria more than 100 m down gradient of the percolation area suggested relatively short travel times. Study findings highlight the utility of geophysics as part of multidisciplinary investigations for OSWTS contaminant plume characterisation, while also demonstrating the capacity of effluent discharging to PPAs to impact groundwater quality at distance. Comparable geophysical responses observed in similar settings across Ireland suggest the phenomena observed in this study are more widespread than previously suspected.
Resumo:
The Ziegler Reservoir fossil site near Snowmass Village, Colorado, provides a unique opportunity to reconstruct high-altitude paleoenvironmental conditions in the Rocky Mountains during the last interglacial period. We used four different techniques to establish a chronological framework for the site. Radiocarbon dating of lake organics, bone collagen, and shell carbonate, and in situ cosmogenic Be and Al ages on a boulder on the crest of a moraine that impounded the lake suggest that the ages of the sediments that hosted the fossils are between ~ 140 ka and > 45 ka. Uranium-series ages of vertebrate remains generally fall within these bounds, but extremely low uranium concentrations and evidence of open-system behavior limit their utility. Optically stimulated luminescence (OSL) ages (n = 18) obtained from fine-grained quartz maintain stratigraphic order, were replicable, and provide reliable ages for the lake sediments. Analysis of the equivalent dose (D) dispersion of the OSL samples showed that the sediments were fully bleached prior to deposition and low scatter suggests that eolian processes were likely the dominant transport mechanism for fine-grained sediments into the lake. The resulting ages show that the fossil-bearing sediments span the latest part of marine isotope stage (MIS) 6, all of MIS 5 and MIS 4, and the earliest part of MIS 3.
Resumo:
The purpose of this research is to identify and assess the opportunities and challenges of implementing a Site Waste Management Plan (SWMP) on projects irrespective of size. In the UK, construction and demolition waste accounts for a third of all UK waste. There are a number of factors that influence the implementation of SWMPs. In order to identify and analyse these factors, 4 unstructured interviews were carried out and a sample of 56 participants completed a questionnaire survey. The scope of the study was limited to UK
construction industry professionals. The analysis revealed that more needs to be done if the industry is to meet government targets of reduction in construction related waste going to landfill. In addition, although SWMP may not yet be legally required on all construction projects, clients and contractors need to realise
the benefits to cut costs and implement best practice by adopting a SWMP. The benefits of implementing a SWMP will not only help to achieve this but also gain significant cost savings on projects and is also extremely beneficial to the environment. This study presents evidence that contractors need to do more to reduce waste and draws a clear link between waste reduction and the implementation of SWMPs. The findings are useful in the ongoing efforts to encourage the industry to find smarter, more efficient and less
damaging ways to operate
Resumo:
Reducing wafer metrology continues to be a major target in semiconductor manufacturing efficiency initiatives due to it being a high cost, non-value added operation that impacts on cycle-time and throughput. However, metrology cannot be eliminated completely given the important role it plays in process monitoring and advanced process control. To achieve the required manufacturing precision, measurements are typically taken at multiple sites across a wafer. The selection of these sites is usually based on a priori knowledge of wafer failure patterns and spatial variability with additional sites added over time in response to process issues. As a result, it is often the case that in mature processes significant redundancy can exist in wafer measurement plans. This paper proposes a novel methodology based on Forward Selection Component Analysis (FSCA) for analyzing historical metrology data in order to determine the minimum set of wafer sites needed for process monitoring. The paper also introduces a virtual metrology (VM) based approach for reconstructing the complete wafer profile from the optimal sites identified by FSCA. The proposed methodology is tested and validated on a wafer manufacturing metrology dataset. © 2012 IEEE.