167 resultados para 070201 Animal Breeding
Resumo:
The immune system comprises an integrated network of cellular interactions. Some responses are predictable, while others are more stochastic. While in vitro the outcome of stimulating a single type of cell may be stereotyped and reproducible, in vivo this is often not the case. This phenomenon often merits the use of animal models in predicting the impact of immunosuppressant drugs. A heavy burden of responsibility lies on the shoulders of the investigator when using animal models to study immunosuppressive agents. The principles of the three R׳s: refine (less suffering,), reduce (lower animal numbers) and replace (alternative in vitro assays) must be applied, as described elsewhere in this issue. Well designed animal model experiments have allowed us to develop all the immunosuppressive agents currently available for treating autoimmune disease and transplant recipients. In this review, we examine the common animal models used in developing immunosuppressive agents, focusing on drugs used in transplant surgery. Autoimmune diseases, such as multiple sclerosis, are covered elsewhere in this issue. We look at the utility and limitations of small and large animal models in measuring potency and toxicity of immunosuppressive therapies.
Resumo:
'Boar taint' is a strong perspiration-like, urine-like unpleasant odour given off upon heating or cooking of meat from some intact (uncastrated) male pigs. Data from the F(2) generation of a Large White (LW) x Meishan (MS) crossbred population were analysed to detect quantitative trait loci (QTL) for traits associated with boar taint. Fat samples from 178 intact male pigs slaughtered at 85 +/- 5 kg were analysed for the major contributors to boar taint (androstenone, indole and skatole). Fat and lean samples from cooked meat were scored for boar, abnormal and pork flavour and odour by a trained sensory panel (SP). A scan with 117 markers covering the whole genome was performed in the F(2) individuals, together with their F(1) parents and purebred grandparents. At the 5% chromosomal significance threshold (approximately equal to the genome-wide suggestive significance threshold), QTL were detected for the laboratory estimate of androstenone on chromosomes 2, 4, 6, 7 and 9. However, only on chromosome 6 were there QTL for boar flavour (BF) traits in the same or adjacent marker intervals as a QTL for the laboratory estimate of androstenone. On chromosome 14, QTL were detected for the laboratory estimates of indole and skatole, the SP score for skatole and the scores for BF in lean and BF in fat. In all five cases, the MS allele generally increased the estimate or score, compared with the LW allele, but it appeared that desirable and undesirable alleles were present in both breeds. This locus on chromosome 14 has considerable potential for use to reduce the incidence of boar taint, especially if further research can identify the causative polymorphism or strongly associated markers.
Resumo:
Tail biting is a serious animal welfare and economic problem in pig production. Tail docking, which reduces but does not eliminate tail biting, remains widespread. However, in the EU tail docking may not be used routinely, and some 'alternative' forms of pig production and certain countries do not allow tail docking at all. Against this background, using a novel approach focusing on research where tail injuries were quantified, we review the measures that can be used to control tail biting in pigs without tail docking. Using this strict criterion, there was good evidence that manipulable substrates and feeder space affect damaging tail biting. Only epidemiological evidence was available for effects of temperature and season, and the effect of stocking density was unclear. Studies suggest that group size has little effect, and the effects of nutrition, disease and breed require further investigation. The review identifies a number of knowledge gaps and promising avenues for future research into prevention and mitigation. We illustrate the diversity of hypotheses concerning how different proposed risk factors might increase tail biting through their effect on each other or on the proposed underlying processes of tail biting. A quantitative comparison of the efficacy of different methods of provision of manipulable materials, and a review of current practices in countries and assurance schemes where tail docking is banned, both suggest that daily provision of small quantities of destructible, manipulable natural materials can be of considerable benefit. Further comparative research is needed into materials, such as ropes, which are compatible with slatted floors. Also, materials which double as fuel for anaerobic digesters could be utilised. As well as optimising housing and management to reduce risk, it is important to detect and treat tail biting as soon as it occurs. Early warning signs before the first bloody tails appear, such as pigs holding their tails tucked under, could in future be automatically detected using precision livestock farming methods enabling earlier reaction and prevention of tail damage. However, there is a lack of scientific studies on how best to respond to outbreaks: the effectiveness of, for example, removing biters and/or bitten pigs, increasing enrichment, or applying substances to tails should be investigated. Finally, some breeding companies are exploring options for reducing the genetic propensity to tail bite. If these various approaches to reduce tail biting are implemented we propose that the need for tail docking will be reduced. © 2014 The Animal Consortium.
Resumo:
An ever-expanding scientific literature highlights the impact of the prenatal environment on many areas of biology. Across all major farmed species, experimental studies have clearly shown that prenatal experiences can have a substantial impact on outcomes relevant to later health, welfare and productivity. In particular, stress or sub-optimal nutrition experienced by the mother during pregnancy has been shown to have wide-ranging and important effects on how her offspring cope with their social, physical and infectious environment. Variation in the conditions for development provided by the reproductive tract or egg, for instance by altered nutritional supply or hormonal exposure, may therefore explain a large degree of variation in many welfare- and productivity-relevant traits. The scientific literature suggests a number of management practices for pre-birth/hatch individuals that could compromise their later welfare. Such studies may have relevance for the welfare of animals under human care, depending on the extent to which real life conditions involve exposure to these practices. Overall, the findings highlight the importance of extending the focus on animal welfare to include the prenatal period, an aspect which until recently has been largely neglected. © 2012 Universities Federation for Animal Welfare The Old School.
Resumo:
Aggression occurs when individuals compete over limiting resources. While theoretical studies have long placed a strong emphasis on context-specificity of aggression, there is increasing recognition that consistent behavioural differences exist among individuals, and that aggressiveness may be an important component of individual personality. Though empirical studies tend to focus on one aspect or the other, we suggest there is merit in modelling both within- and among-individual variation in agonistic behaviour simultaneously. Here, we demonstrate how this can be achieved using multivariate linear mixed effect models. Using data from repeated mirror trials and dyadic interactions of male green swordtails, Xiphophorus helleri, we show repeatable components of (co)variation in a suite of agonistic behaviour that is broadly consistent with a major axis of variation in aggressiveness. We also show that observed focal behaviour is dependent on opponent effects, which can themselves be repeatable but were more generally found to be context specific. In particular, our models show that within-individual variation in agonistic behaviour is explained, at least in part, by the relative size of a live opponent as predicted by contest theory. Finally, we suggest several additional applications of the multivariate models demonstrated here. These include testing the recently queried functional equivalence of alternative experimental approaches, (e.g., mirror trials, dyadic interaction tests) for assaying individual aggressiveness. © 2011 Wilson et al.
Resumo:
Temperament tests are widely accepted as instruments for profiling behavioral variability in dogs, and they are applied in numerous areas of investigation (e.g. suitability for adoption or for breeding). During testing, to elicit a dog's reaction toward novel stimuli and predict its behavior in everyday life, model devices such as a child-like doll, or a fake dog, are often employed. However, the reliability of these devices to accurately stimulate dogs' reactions to children or dogs, is unknown and perhaps overestimated. This may be a particular concern in the case of aggressive behavior toward humans, a significant public health issue. The aim of this study was to: (1) evaluate the correlation between dogs' reactions to these devices, and owners' reports of their dog's aggression history (using the C-BARQ ??); (2) compare reactions toward the devices of dogs with and without histories of aggression. Subjects were selected among those visiting for behavioral consultation at the Veterinary Hospital of the University of Pennsylvania, and previously categorized as aggressive toward unfamiliar children, conspecifics, or as non-aggressive dogs (control). The test consisted of different components: an unfamiliar female tester approaching the dog; the presentation of a child-like doll, an ambiguous object, and a fake plastic dog. All tests were videotaped and durations of behaviors were later analyzed on the basis of a specified ethogram. Dogs' reactions were compared to C-BARQ scores, and interesting correlations emerged for 'dog-directed aggression/fear' (R = 0.48, P = 0.004), and 'stranger-directed aggression' (R = 0.58, P <0.001) factors. Dogs differed in their reactions toward the devices: the child-like doll and the fake dog elicited more social behaviors than the ambiguous object used as a control stimulus. Issues concerning the reliability of these tools to assess canine temperament are discussed. ?? 2012 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Smart tags attached to freely-roaming animals recording multiple parameters at infra-second rates are becoming commonplace, and are transforming our understanding of the way wild animals behave. Interpretation of such data is complex and currently limits the ability of biologists to realise the value of their recorded information.
DESCRIPTION: This work presents Framework4, an all-encompassing software suite which operates on smart sensor data to determine the 4 key elements considered pivotal for movement analysis from such tags (Endangered Species Res 4: 123-37, 2008). These are; animal trajectory, behaviour, energy expenditure and quantification of the environment in which the animal moves. The program transforms smart sensor data into dead-reckoned movements, template-matched behaviours, dynamic body acceleration-derived energetics and position-linked environmental data before outputting it all into a single file. Biologists are thus left with a single data set where animal actions and environmental conditions can be linked across time and space.
CONCLUSIONS: Framework4 is a user-friendly software that assists biologists in elucidating 4 key aspects of wild animal ecology using data derived from tags with multiple sensors recording at high rates. Its use should enhance the ability of biologists to derive meaningful data rapidly from complex data.
Resumo:
BACKGROUND: Research on wild animal ecology is increasingly employing GPS telemetry in order to determine animal movement. However, GPS systems record position intermittently, providing no information on latent position or track tortuosity. High frequency GPS have high power requirements, which necessitates large batteries (often effectively precluding their use on small animals) or reduced deployment duration. Dead-reckoning is an alternative approach which has the potential to 'fill in the gaps' between less resolute forms of telemetry without incurring the power costs. However, although this method has been used in aquatic environments, no explicit demonstration of terrestrial dead-reckoning has been presented.
RESULTS: We perform a simple validation experiment to assess the rate of error accumulation in terrestrial dead-reckoning. In addition, examples of successful implementation of dead-reckoning are given using data from the domestic dog Canus lupus, horse Equus ferus, cow Bos taurus and wild badger Meles meles.
CONCLUSIONS: This study documents how terrestrial dead-reckoning can be undertaken, describing derivation of heading from tri-axial accelerometer and tri-axial magnetometer data, correction for hard and soft iron distortions on the magnetometer output, and presenting a novel correction procedure to marry dead-reckoned paths to ground-truthed positions. This study is the first explicit demonstration of terrestrial dead-reckoning, which provides a workable method of deriving the paths of animals on a step-by-step scale. The wider implications of this method for the understanding of animal movement ecology are discussed.