166 resultados para Waste paper
Resumo:
The urgent need for alternative renewable energies to supplement petroleum-based fuels and the reduction of landfill sites for disposal of solid wastes makes it increasingly attractive to produce inexpensive biofuels from the organic fraction of the municipal solid waste. Therefore, municipal waste in the form of newspaper was investigated as a potential feedstock for fermentable sugars production. Hydrolysis of newspaper by dilute phosphoric acid was carried out in autoclave Parr reactor, where reactor temperature and acid concentration were examined. Xylose concentration reached a maximum value of 14 g/100 g dry mass corresponding to a yield of 94% at the best identified conditions of 2.5 wt% HPO, 135°C, 120 min reaction time, and at 2.5 wt% HPO, 150°C, and 60 min reaction time. For glucose, an average yield of 26% was obtained at 2.5 wt% HPO, 200°C, and 30 min. Furfural and 5-hydroxymethylfurfural (HMF) formation was clearly affected by reaction temperature, where the higher the temperature the higher the formation rate. The maximum furfural formed was an average of 3 g/100 g dry mass, corresponding to a yield of 28%. The kinetic study of the acid hydrolysis was also carried out using the Saeman and the two-fraction models. It was found for both models that the kinetic constants (K) depend on the acid concentration and temperature. The degradation of HMF to levulinic acid is faster than the degradation of furfural to formic acid. Also, the degradation rate is higher than the formation rate for both inhibitors when degradation is observed.
Resumo:
Modern internal combustion (IC) engines reject around two thirds of the energy provided by the fuel as low-grade waste heat. Capturing a portion of this waste heat energy and transforming it into a more useful form of energy could result in a significant reduction in fuel consumption. By using the low-grade heat, an organic Rankine cycle (ORC) can produce mechanical work from a pressurised organic fluid with the use of an expander.
Ideal gas assumptions are shown to produce significant errors in expander performance predictions when using an organic fluid. This paper details the mathematical modelling technique used to accurately model the thermodynamic processes for both ideal and non-ideal fluids within the reciprocating expander. A comparison between the two methods illustrates the extent of the errors when modelling a reciprocating piston expander. Use of the ideal gas assumptions are shown to produce an error of 55% in the prediction of power produced by the expander when operating on refrigerant R134a.
Harmonic generation and wave mixing in nonlinear metamaterials and photonic crystals (Invited paper)
Resumo:
The basic concepts and phenomenology of wave mixing and harmonic generation are reviewed in context of the recent advances in the enhanced nonlinear activity in metamaterials and photonic crystals. The effects of dispersion, field confinement and phase synchronism are illustrated by the examples of the on-purpose designed artificial nonlinear structures. (c) 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE 22:469482, 2012.
Resumo:
The two-stroke engine, by its nature is very dependent on the unsteady gas dynamics within an exhaust system. This is demonstrated by the tuning effects on two-stroke engines, which have been well documented. In consideration of current emissions legislation, a two-stroke engine can be fitted with a catalytic converter for the outboard, utility or automotive markets. The catalytic substrate represents a major obstruction to the flow of exhaust gas, which hinders the progression of the main exhausted pulse, and in turn effects the scavenging of the cylinder and ultimately the performance of the engine.
Resumo:
Abstract:
Background: An estimated 30-60% of older
adults fall every year and about 1% of falls result in a hip fracture. Hip fracture is a serious and growing problem, with a 3-10 fold rise in worldwide incidence predicted by 2050 (Gullberg, et al 1997). Hip protectors are underwear with built in protection for the greater trochanter. They are designed to prevent hip fractures by dispersing or absorbing the force of a fall. Trials
published to 2001 were broadly supportive of
the effectiveness of hip protectors, and this
was reflected in a Cochrane review in 2000.
However, earlier trials were methodologically
flawed and subsequent trials have not demonstrated effectiveness. The most recent Cochrane review describes only a marginal benefit (Parker et al, 2005).
Review and Discussion: This presentation
evaluates the current evidence for the use
of hip protectors and discusses the use of
that evidence by manufacturers, suppliers,
professional groups and guideline developers.
Interestingly, despite the limitations of the
evidence base, most advice has been broadly
supportive. Reasons for this are proposed
and discussed in the context of a critique of
evidence-based healthcare. protectors. However, the available evidence can be used in different ways and for different purposes by those with an interest in promoting
the use of hip protectors. A conservative
approach is warranted, where, if we cannot
demonstrate that hip protectors work, we
presume that they do not. This presentation will be of use to practitioners wanting to evaluate the evidence base for hip protectors (and other recommended interventions) on behalf of clients. It will also be of interest to policy makers who must assess the claims made for health care technologies as part of the decisionmaking process.
Recommended reading:
Gullberg B, Johnell O, Kanis JA (1997) Worldwide
projections for hip fracture. Osteoporos
Int. 7(5):407-13 .
Parker MJ, Gillespie WJ, Gillespie LD (2005) Hip
protectors for preventing hip fractures in older
people. The Cochrane Database of Systematic
Reviews Issue 3. Art. No.: CD001255.pub3. DOI:
10.1002/14651858.CD001255.pub3.
Resumo:
An underground work (such as a tunnel or a cavern) has many, well known, environmental qualities such as: no physical barriers crossing the land, less maintenance costs than an analogous surface structure, less expenses for heating and conditioning; a localized emission of noise, gas, dust during operation and, finally, a better protection against seismic actions.
It cannot be forgotten, anyway, that some negative environmental features are present such as, for example, : perturbation, pollution and drainage of the groundwater; settlements; disposal of waste rock.
In the paper the above mentioned concepts are discussed and analysed to give a global overview of all this aspects.
Resumo:
Landfills are the primary option for waste disposal all over the world. Most of the landfill sites across the world are old and are not engineered to prevent contamination of the underlying soil and groundwater by the toxic leachate. The pollutants from landfill leachate have accumulative and detrimental effect on the ecology and food chains leading to carcinogenic effects, acute toxicity and genotoxicity among human beings. Management of this highly toxic leachate presents a challenging problem to the regulatory authorities who have set specific regulations regarding maximum limits of contaminants in treated leachate prior to disposal into the environment to ensure minimal environmental impact. There are different stages of leachate management such as monitoring of its formation and flow into the environment, identification of hazards associated with it and its treatment prior to disposal into the environment. This review focuses on: (i) leachate composition, (ii) Plume migration, (iii) Contaminant fate, (iv) Leachate plume monitoring techniques, (v) Risk assessment techniques, Hazard rating methods, mathematical modeling, and (vi) Recent innovations in leachate treatment technologies. However, due to seasonal fluctuations in leachate composition, flow rate and leachate volume, the management approaches cannot be stereotyped. Every scenario is unique and the strategy will vary accordingly. This paper lays out the choices for making an educated guess leading to the best management option.
Resumo:
Hybrid vehicles can use energy storage systems to disconnect the engine from the driving wheels of the vehicle. This enables the engine to be run closer to its optimum operating condition, but fuel energy is still wasted through the exhaust system as heat. The use of a turbogenerator on the exhaust line addresses this problem by capturing some of the otherwise wasted heat and converting it into useful electrical energy.
This paper outlines the work undertaken to model the engine of a diesel-electric hybrid bus, coupled with a hybrid powertrain model which analysed the performance of a hybrid vehicle over a drive-cycle. The distribution of the turbogenerator power was analysed along with the effect on the fuel consumption of the bus. This showed that including the turbogenerator produced a 2.4% reduction in fuel consumption over a typical drive-cycle.
The hybrid bus generator was then optimised to improve the performance of the combined vehicle/engine package and the turbogenerator was then shown to offer a 3.0% reduction in fuel consumption. The financial benefits of using the turbogenerator were also considered in terms of fuel savings for operators. For an average bus, a turbogenerator could reduce fuel costs by around £1200 per year.