272 resultados para Synthetic Peptide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report the primary structure of a novel peptide, named helokinestatin-5 (VPPPLQMPLIPR), from the venom of the Gila monster (Heloderma suspectum). Helokinestatin-5 differs in structure from helokinestatin-3 by deletion of a single prolyl residue in the N-terminally located polyproline region. Two different biosynthetic precursors were consistently cloned from a venom-derived cDNA library. The first encoded helokinestatins 1–4 and a single copy of C-type natriuretic peptide, as previously described, whereas the second was virtually identical, lacking only a single prolyl codon as found in the mature attenuated helokinestatin-5 peptide. Helokinestatins 1–3 and 5 were synthesized by solid-phase fmoc chemistry and each synthetic replicate was found to antagonize the relaxation effect induced by bradykinin on rat tail artery smooth muscle. Helokinestatins thus represent a novel family of vasoactive peptides from the venom of helodermatid lizards

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bradykinin and related peptides are found in the defensive skin secretions of many frogs and toads. While the physiological roles of bradykinin-related peptides in sub-mammalian vertebrates remains obscure, in mammals, including humans, canonical bradykinin mediates a multitude of biological effects including the proliferation of many types of cancer cell. Here we have examined the effect of the bradykinin B2 receptor antagonist peptide, kinestatin, originally isolated by our group from the skin secretion of the giant fire-bellied toad, Bombina maxima, on the proliferation of the human prostate cancer cell lines, PC3, DU175 and LnCAP. The bradykinin receptor status of all cell lines investigated was established through PCR amplification of transcripts encoding both B1 and B2 receptor subtypes. Following this demonstration, all cell lines were grown in the presence or absence of kinestatin and several additional bradykinin receptor antagonists of amphibian skin origin and the effects on proliferation of the cell lines was investigated using the MTT assay and by counting of the cells in individual wells of 96-well plates. All of the amphibian skin secretion-derived bradykinin receptor antagonists inhibited proliferation of all of the prostate cancer lines investigated in a dose-dependent manner. In addition, following incubation of peptides with each cell line and analysis of catabolites by mass spectrometry, it was found that bradykinin was highly labile and each antagonist was highly stable under the conditions employed. Bradykinin signalling pathways are thus worthy of further investigation in human prostate cancer cell lines and the evidence presented here would suggest the testing of efficacy in animal models of prostate cancer as a positive outcome could lead to a drug development programme for the treatment of this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tachykinins hylambatin and (Thr)11-hylambatin have been isolated from the defensive skin secretion of the African hyperoliid frog, Kassina maculata,. Hylambatin (DPPDPNRFYGMMamide) is revised in structure from the original sequence by a single site substitution (Asn/Asp at position 6), and (Thr)11-hylambatin, a novel tachykinin, differs in structure from hylambatin by a single Thr/Met substitution. (Thr)11-hylambatin is five- to ten-fold more abundant than hylambatin in secretions. Synthetic replicates of both peptides were active in smooth muscle preparations including the rat tail artery, rat ileum and bovine trachea. While hylambatin displayed activity consistent with an NK1-receptor ligand, (Thr)11-hylambatin was more active than either substance P or neurokinin A in both NK1- and NK-2 receptor rich preparations. Incorporation of a threoninyl residue rather than the canonical leucyl residue at the penultimate position in both substance P and neurokinin A, generated active ligands in both arterial and intestinal smooth muscle preparations. Hylambatin precursor cDNAs, designated HYBN-1 and HYBN-2, respectively, were cloned from a skin library by 3'- and 5'-RACE reactions. Both were highly-homologous containing open-reading frames of 66 amino acids encoding single copies of either hylambatin or (Thr)11-hylambatin. These data reveal a hitherto unrecognized structure/activity attribute of mammalian tachykinin receptors revealed though discovery of a novel amphibian skin-derived, site-substituted peptide ligand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian skin secretions are rich sources of biologically-active peptides and several studies involving molecular cloning of their biosynthetic precursors have revealed that many exhibit highly-conserved domain architectures with an associated high degree of primary structural conservation of the signal peptides. This conservation of primary structure is reflected at the level of nucleotide sequence — a finding that has permitted our group to design primers to these sites facilitating “shotgun” cloning using cDNA libraries from uninvestigated species. Here we describe the results of such an approach using a skin secretion-derived cDNA library from the Fujian large-headed frog, Limnonectes fujianensis, a completely unstudied species. In over 50 clones studied by this approach, 12 were found to encode peptides of different primary structure. Representatives of 5 different families of antimicrobial peptides derived from the skins of ranid frogs were found and these were brevinin-1 (n = 3), the ranatuerin-2 (n = 3), esculentin-2 (n = 1), temporin (n = 1) and chensinin (n = 1). Three clones encoded peptides that were novel with no homologues present in contemporary on-line databases. These included two related 16-mer peptides, named peptides SC-16a and b, and an unrelated 24-mer, named peptide AG-24. Preliminary biological characterisation of SC-16a has demonstrated an antimicrobial activity against Gram-negative bacteria with a minimal inhibitory concentration of 35 µM with no observable haemolysis up to 200 µM. This finding may suggest that this peptide represents a novel class of antimicrobial with little effect on eukaryotic membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skin secretions from Australian frogs of the genus Litoria have been extensively studied for many years and are known to contain a large array of antimicrobial peptides that often bear their specific names — caerins (L. caerulea), aureins (L. aurea), citropins (L. citropa) and maculatins (L. genimaculata) — and each group displays distinct primary structural attributes. During a systematic transcriptome cloning study using a cDNA library derived from skin secretion of L. aurea, a series of identical clones were identified that encoded a novel 25-mer antimicrobial peptide that displayed 92% structural identity with caerin 1.12 from L. caerulea, differing in amino acid sequence at only two positions — Arg for Gly at position 7 and Leu amide for Ser amide at the C-terminus. The novel peptide had conserved Pro residues at positions 15 and 19 that flank a flexible hinge region which previous studies have suggested are important for effective orientation of the two alpha-helices within the bacterial membrane resulting in lysis of cells. As the two substitutions in the novel peptide serve to increase both positive charge and hydrophobicity, we synthesised a replicate and determined its minimal inhibitory concentration (MIC) against Gram positive Staphylococcus aureus and Gram negative Escherichia coli. The MICs for these organisms were 3 µM and 4 µM, respectively, indicating a high potency and haemolysis was

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery that the hypotensive sequela of envenomation by the South American viper, Bothrops jararaca, was mediated by peptides, represented a milestone in drug discovery research that led to the introduction of ACE inhibitors. These bradykinin-potentiating peptides (BPPs) have been found in the venoms of many species of viper and molecular cloning of biosynthetic precursors has revealed that each encodes several different BPPs in tandem with a single copy of a C-type natriuretic peptide (CNP) located at the C-terminus. Venoms of the African forest vipers (Atheris) have been poorly studied possibly because they do not represent a major danger to humans. However, initial studies have indicated that they contain some of the “classical” protein toxins of viper venoms and a novel class of peptide, the polyglycine/polyhistidine (pGpH) peptides. These peptides occur in several molecular forms with different numbers of repetitive glycine and histidine repeats. We have cloned the biosynthetic precursor of A. squamigera pGpH peptides from a venom-derived cDNA library and have confirmed that a single copy of CNP is located at the C-terminus and additionally that, like BPPs in other vipers, pGpH peptides are encoded in tandem within this single precursor. Solid phase peptide synthesis of pGpH peptides has proven to be extremely difficult but is progressing and acquisition of synthetic replicates of each peptide is a necessary prerequisite for systematic pharmacological characterisation as establishment of a biological function for these peptides remains elusive. pGpH peptides may prove to play a role as fundamental as that of the BPPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Venom of the Gila Monster (Heloderma suspectum) has proven to be an unlikely source of lead compounds (exendins) for the development of new injectable peptide therapeutics for the treatment of Type 2 diabetes. However, no systematic searches for new classes of bioactive peptides in lizard venom have appeared until recently. Here we describe the discovery of a new class of peptides – the helokinestatins – from H. suspectum venom, their structural characterisation and that of their biosynthetic precursors from cloned cDNA. In addition, we have subjected members of the family to preliminary pharmacological characterisation. Helokinestatins 1–6 are a family of proline-rich peptides containing 10–15 amino acid residues terminating in a common -Pro-Arg.OH motif. They are encoded in tandem within two virtually identical biosynthetic precursors of 177 and 178 amino acid residues, differing by only a single Pro residue. Each precursor also encodes a single copy of a C-type natriuretic peptide located at the C-terminus. Synthetic replicates of all helokinestatins were shown to be devoid of any direct action on the smooth muscle of rat tail artery but were found to be potent inhibitors of bradykinin-induced relaxation in this preparation in a manner that is suggestive of a non-competitive mechanism. Helokinestatin-3 (VPPPPLQMPLIPR) and helokinestatin-5 (VPPPLQMPLIPR) were found to be most potent in this respect causing almost complete inhibition of bradykinin-induced relaxation. Helokinestatins and BPPs may have a shared evolutionary history but the former do not inhibit ACE. The bradykinin inhibitory potential of helokinestatins may be exploited in the local control of chronic inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protease inhibitors are found in many venoms and evidence suggests that they occur widely in amphibian skin secretions. Kunitz inhibitors have been found in the skin secretions of bombinid toads and ranid frogs, Kazal inhibitors in phyllomedusine frogs and Bowman–Birk inhibitors in ranid frogs. Selective protease inhibitors could have important applications as therapeutics in the treatment of diseases in which discrete proteases play an aetiologcal role. Here we have examined the skin secretion of the edible frog, Rana esculenta, for protease inhibitors using trypsin as a model. HPLC fractions of secretions were screened for inhibitory activity using a chromogenic substrate as reporter. Three major peptides were resolved with trypsin inhibitory activity in HPLC fractions — one was a Kunitz-type inhibitor, a second was a Bowman–Birk inhibitor but the third represented a novel class of trypsin inhibitor in European frog skin. Analysis of the peptide established the structure of a 17-mer with an N-terminal Ala (A) residue and a C-terminal Cys (C) residue with a single disulphide bridge between Cys 12 and 17. Peptide AC-17 resembled a typical “Rana box” antimicrobial peptide but while it was active against Escherichia coli (MIC 30 µM) it was devoid of activity against Staphylococcus aureus and of haemolytic activity. In contrast, the peptide was a potent inhibitor of trypsin with a Ki of 5.56 µM. AC-17 represents the prototype of a novel trypsin inhibitor from the skin secretion of a European ranid frog that may target a trypsin-like protease present on the surface of Gram-negative bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antimicrobial peptides of amphibian skin secretions are proposed to aid survival in microbe-rich environments. While many amphibians inhabit such environments, other such as the Wuyi Mountain torrent frog, Amolops wuyiensis, live in pristine waters flowing from underground mountain springs. This species thus represents an interesting model in which to study antimicrobial peptides. “Shotgun” cloning of a skin-derived cDNA library from this species identified transcripts encoding a brevinin-1 and a ranatuerin-2. Peptides with coincident molecular masses to both predicted mature peptides were identified in HPLC fractions of skin secretion. Synthetic replicates of both peptides were generated by solid-phase peptide synthesis and tested for activity using Staphylococcus aureus, Escherichia coli and Candida albicans. The brevinin was found to be broad-spectrum and potent with minimum inhibitory concentrations (MICs) of 24 µM (Sa), 5 µM (Ec) and 20 µM (Ca). In contrast, the ranatuerin was less effective and of narrower spectrum with an MIC > 200 µM for Sa, 40 µM (Ec) and 120 µM (Ca). Thus this species of amphibian that lives in a pristine environment does indeed possess at least one potent and broad-spectrum antimicrobial peptide in its skin secretion arsenal. This phenomenon could be explained in several ways. Firstly, it may represent an ancestral peptide required when the stem species inhabited microbe-rich environments. However, there is mounting evidence for the second reason, that suggests the function of such peptides is not primarily in antimicrobial defence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian skin secretions are renowned as complex mixtures of bioactive peptides many of which are analogues of endogenous regulatory peptides. While skin secretions can be obtained non-invasively for peptidome analysis, parallel studies on the granular gland transcriptome required specimen sacrifice. The aim of the present study was to analyse archived skin secretions to determine the robustness of bioactive peptide precursor-encoding polyadenylated mRNAs in an attempt to extract maximum molecular information from rare samples. A range of solvated skin secretion samples were examined after lyophilisation for their potential to generate viable and comprehensive cDNA libraries based upon polyadenylated mRNA capture and amplification/cloning using appropriate commercial kits. Here we present unequivocal data that the granular gland transcriptome persists in a PCR amenable format even after storage for as long as 12 years in 0.1%(v/v) aqueous trifluoroacetic acid (TFA). We used a pooled skin secretion sample (2 ml) from the yellow-bellied toad, Bombina variegata (n = 14), containing the equivalent of 5 mg/ml of lyophilised skin secretion, that had been used in part for peptide isolation purposes in 1998 and had been stored at - 20 °C since that time. In the first cloning experiment, 12 different bombinin-like peptide precursor cDNAs were cloned encoding 17 different bombinins, the majority of which were novel. Subsequently, bombesin and bradykinin-related peptide precursor transcripts have been cloned successfully. These data illustrate the unexpected stability/longevity of the transcriptome in these secretions — a finding with implications for both this field of research and for the wider field of molecular biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A different approach to the synthesis of dipeptides is described based on the formation of the (NHCHRCONH)-C-1-(CHRCO)-C-2 bond by carbenoid N-H insertion, rather than the formation of the peptide bond itself. Thus decomposition of triethyl diazophosphonoacetate catalysed by rhodium(Ii) acetate in the presence of N-protected amino acid amides 8 gives the phosphonates 9, Subsequent Wadsworth-Emmons reaction of 9 with aldehydes in the presence of DBU gives dehydro dipeptides 10. The reaction has been extended to a simple two-step procedure, without the isolation of the intermediate phosphonate. for conversion of a range of amino acid amides 11 into dehydro dipepides 12 and to an N-methylamide 11h, and for conversion of a dipeptide: to tripeptide (13-14). Direct conversion, by using methyl diazophenylacetate, of amino acid amides to phenylglycine-containing dipeptides 19 proceeds in good chemical yield, but with poor diastereoselectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach to the synthesis of dipeptides is described based on the formation of the CONH-CHRCO bond by carbenoid N-H insertion, rather than the formation of the peptide bond itself. The key N-H insertion reaction was carried out by treating a mixt. of N-protected amino acid amide and tri-Et diazophosphonoacetate, EtO2CC(:N2)PO(OEt)2, with a catalytic amt. of Rh2(OAc)4 in toluene to form phosphonates, e.g. I (R1 = H, Me, iso-Pr, iso-Bu; R2 = PhCH2O2C, Me3CO2C) in good yield. Dehydro dipeptides, e.g. II (R1, R2 = same as above; R3 = Ph, iso-Pr, N-Boc-indol-3-yl) were prepd. by Wadsworth-Emmons reaction of the phosphonates I with R3CHO using DBU as base.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing emergence of multidrug-resistant micro-organisms presents one of the greatest challenges in the clinical management of infectious diseases. Therefore, novel antimicrobial agents are urgently required to address this issue. In this report, we describe the solid phase synthesis, characterization, microbiological and toxicological evaluation of a library of ultrashort cationic antimicrobial lipopeptides based on the previously described tetrapeptide amide H-Orn-Orn-Trp-Trp-NH2 conjugated with saturated fatty acids which have inherent antimicrobial activity. The microbiological activity of these ultrashort cationic lipopeptides, which exhibit excellent, broad-spectrum antimicrobial activity against a number of clinically important pathogenic bacteria and fungi, including multidrug resistant micro-organisms in both planktonic and sessile (biofilm) cultures is reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intermedin (IMD) is a novel peptide related to calcitonin gene-related peptide (CGRP) and adrenomedullin (AM). Proteolytic processing of a larger precursor yields a series of biologically active C-terminal fragments, IMD1–53, IMD1–47 and IMD8–47. IMD shares a family of receptors with AM and CGRP composed of a calcitonin-receptor like receptor (CALCRL) associated with one of three receptor activity modifying proteins (RAMP). Compared to CGRP, IMD is less potent at CGRP1 receptors but more potent at AM1 receptors and AM2 receptors; compared to AM, IMD is more potent at CGRP1 receptors but less potent at AM1 and AM2 receptors. The cellular and tissue distribution of IMD overlaps in some aspects with that of CGRP and AM but is distinct from both. IMD is present in neonatal but absent or expressed sparsely, in adult heart and vasculature and present at low levels in plasma. The prominent localization of IMD in hypothalamus and pituitary and in kidney is consistent with a physiological role in the central and peripheral regulation of the circulation and water-electrolyte homeostasis. IMD is a potent systemic and pulmonary vasodilator, influences regional blood flow and augments cardiac contractility. IMD protects myocardium from the deleterious effects of oxidative stress associated with ischaemia-reperfusion injury and exerts an anti-growth effect directly on cardiomyocytes to oppose the influence of hypertrophic stimuli. The robust increase in expression of the peptide in hypertrophied and ischaemic myocardium indicates an important protective role for IMD as an endogenous counter-regulatory peptide in the heart.