395 resultados para Silicone breast implant
Resumo:
This multi-centre UK study assesses the impact of predictive testing for breast and ovarian cancer predisposition genes (BRCA 1/2) in the clinical context. In the year following predictive testing, 261 adults (59 male) from nine UK genetics centres participated; 9 I gene mutation carriers and 170 noncarriers. Self-report questionnaires were completed at baseline (pre-genetic testing) and 1, 4 and 12 months following the genetic test result. Men were assessed for general mental health (by general health questionnaire (GHQ)) and women for general mental health, cancer-related worry, intrusive and avoidant thoughts, perception of risk and risk management behaviour. Main comparisons were between female carriers and noncarriers on all measures and men and women for general mental health. Female noncarriers benefited psychologically, with significant reductions in cancer-related worry following testing (P
Resumo:
Breast cancer is the most common cause of cancer death in the United Kingdom, with a lifetime risk of one in nine in women. Only 5-10% of all cancers is thought to be due to strongly penetrant inherited predisposing genes, such as BRCA1 and BRCA2. However, other less penetrant genes, including some autosomal recessive genes, are likely to be of etiological importance in other families. This review addresses the current knowledge of breast cancer susceptibility genes and explores the possibilities for future developments. Features of tumor pathology, prognosis, and the scope for targeted treatments in mutation carriers are discussed, and the management of known carriers and those at increased risk for developing breast cancer are evaluated. Genetic testing for cancer susceptibility may become widely available in the future, and has important ethical and management implications. (C) 2004 Wiley-Liss, Inc.
Resumo:
The present study determines whether the novel designer biomimetic vector (DBV) can condense anddeliver the cytotoxic iNOS gene to breast cancer cells to achieve a therapeutic effect. We have previouslyshown the benefits of iNOS for cancer gene therapy but the stumbling block to future development hasbeen the delivery system.The DBV was expressed, purified and complexed with the iNOS gene. The particle size and chargewere determined via dynamic light scattering techniques. The toxicity of the DBV/iNOS nanoparticleswas quantified using the cell toxicity and clonogenic assays. Over expression of iNOS was confirmed viaWestern blotting and Griess test.The DBV delivery system fully condensed the iNOS gene with nanoparticles less than 100 nm. Transfectionwith the DBV/iNOS nanoparticles resulted in a maximum of 62% cell killing and less than 20%clonogenicity. INOS overexpression was confirmed and total nitrite levels were in the range of 18M.We report for the first time that the DBV can successfully deliver iNOS and achieve a therapeuticeffect. There is significant cytotoxicity coupled with evidence of a bystander effect. We concludethat the success of the DBV fusion protein in the delivery of iNOS in vitro is worthy of future in vivo experiments.
Resumo:
Little is known about the origin of basal-like breast cancers, an aggressive disease that is highly similar to BRCA1-mutant breast cancers. p63 family proteins that are structurally related to the p53 suppressor protein are known to function in stem cell regulation and stratified epithelia development in multiple tissues, and p63 expression may be a marker of basal-like breast cancers. Here we report that Delta Np63 isoforms of p63 are transcriptional targets for positive regulation by BRCA1. Our analyses of breast cancer tissue microarrays and BRCA1-modulated breast cancer cell lines do not support earlier reports that p63 is a marker of basal-like or BRCA1 mutant cancers. Nevertheless, we found that BRCA1 interacts with the specific p63 isoform Delta Np63 gamma along with transcription factor isoforms AP-2 alpha and AP-2 gamma. BRCA1 required Delta Np63 gamma and AP-2 gamma to localize to an intronic enhancer region within the p63 gene to upregulate transcription of the Delta Np63 isoforms. In mammary stem/progenitor cells, siRNA- mediated knockdown of Delta Np63 expression resulted in genomic instability, increased cell proliferation, loss of DNA damage checkpoint control, and impaired growth control. Together, our findings establish that transcriptional upregulation of Delta Np63 proteins is critical for BRCA1 suppressor function and that defects in BRCA1-Delta Np63 signaling are key events in the pathogenesis of basal-like breast cancer. Cancer Res; 71( 5); 1933-44. (c) 2011 AACR.
Resumo:
Aims-An increased concentration of insulin-like growth factor 1 (IGF-1) is an independent risk factor for premenopausal breast cancer. Tamoxifen is thought initially to reduce concentrations of IGF-1 and increase concentrations of the IGF binding proteins. The aim of this study was to compare concentrations of IGF-1, IGF binding protein 1 (IGF-BP1), and IGF-BP3 in patients with breast cancer (n = 14) with those seen in control subjects (n = 23) and to assess the effect of tamoxifen on IGF status in these patients.
Resumo:
Predicting long-term outcome after breast-cancer diagnosis remains problematic, particularly for patients with clinically small, axillary lymph node- negative tumours, Evidence suggests that the lectin Helix pomatia agglutinin (HPA) identifies oligosaccharides associated with poor-prognosis cancer. Our aim was to identify oligosaccharides that bind HPA in aggressive breast cancers. Breast-cancer cell lines (MCF-7, BT-549 and BT-20) and a cell line From human milk (HBL-100), which showed a range of HPA-binding intensities, were used to extract HPA-binding glycoproteins, Oligosaccharides were released using anhydrous hydrazine and separated on a range of HPLC matrices. We investigated whether HPA-binding oligosaccharides from cell lines were present in human breast-cancer tissues, using 69 breast-cancer specimens from patients with between 5 and 10 years' follow-up. A monosialylated oligosaccharide was over-expressed in the cell line that bound HPA strongly. Further analysis by normal-phase HPLC showed that the 2-aminobenzamide-conjugated oligosaccharide had a hydrodynamic volume of 4.58 glucose units (HPAgly 1), Increased expression of HPAgly 1 was associated with HPA staining of breast-cancer specimens (Student's t-test p = 0.025). Analysis of oligosaccharide levels and disease-free survival after treatment for breast cancer indicated a shorter disease-free interval for patients with elevated levels of HPAgly 1, This is the first time that histochemical lectin staining has been correlated with biochemical mapping of oligosaccharides, Using this approach, we have identified a monosialylated HPA lectin-binding oligosaccharide present in breast-cancer cells grown in vitro which is elevated in breast-cancer specimens that bind the lectin, (C) 2001 Wiley-Liss, Inc.
Resumo:
Background: Previous research showed that deprived individuals are less likely to attend breast screening and those providing intense amounts of informal care tend to be more deprived than non-caregivers. The aim of this study was to examine the relationship between informal caregiving and uptake of breast screening and to determine if socio-economic gradients in screening attendance were explained by caregiving responsibilities.
Resumo:
Aims:
Resumo:
Endoplasmic reticulum protein 29 (ERp29) is a novel endoplasmic reticulum ( ER) secretion factor that facilitates the transport of secretory proteins in the early secretory pathway. Recently, it was found to be overexpressed in several cancers; however, little is known regarding its function in breast cancer progression. In this study, we show that the expression of ERp29 was reduced with tumor progression in clinical specimens of breast cancer, and that overexpression of ERp29 resulted in G(0)/G(1) arrest and inhibited cell proliferation in MDA-MB-231 cells. Importantly, overexpression of ERp29 in MDA-MB-231 cells led to a phenotypic change and mesenchymal-epithelial transition (MET) characterized by cytoskeletal reorganization with loss of stress fibers, reduction of fibronectin (FN), reactivation of epithelial cell marker E-cadherin and loss of mesenchymal cell marker vimentin. Knockdown of ERp29 by shRNA in MCF-7 cells reduced E-cadherin, but increased vimentin expression. Furthermore, ERp29 overexpression in MDA-MB-231 and SKBr3 cells decreased cell migration/invasion and reduced cell transformation, whereas silencing of ERp29 in MCF-7 cells enhanced cell aggressive behavior. Significantly, expression of ERp29 in MDA-MB-231 cells suppressed tumor formation in nude mice by repressing the cell proliferative index (Ki-67 positivity). Transcriptional profiling analysis showed that ERp29 acts as a central regulator by upregulating a group of genes with tumor suppressive function, for example, E-cadherin (CDH1), cyclin-dependent kinase inhibitor (CDKN2B) and spleen tyrosine kinase (SYK), and by downregulating a group of genes that regulate cell proliferation (eg, FN, epidermal growth factor receptor ( EGFR) and plasminogen activator receptor ( uPAR)). It is noteworthy that ERp29 significantly attenuated the overall ERK cascade, whereas the ratio of p-ERK1 to p-ERK2 was highly increased. Taken together, our results showed that ERp29 is a novel regulator leading to cell growth arrest and cell transition from a proliferative to a quiescent state, and reprogramming molecular portraits to suppress the tumor growth of MDA-MB-231 breast cancer cells. Laboratory Investigation (2009) 89, 1229-1242; doi: 10.1038/labinvest.2009.87; published online 21 September 2009
Resumo:
Purpose: The runt-related transcription factor, Runx2 may have an oncogenic role in mediating metastatic events in breast cancer, but whether Runx2 has a role in the early phases of breast cancer development is not clear. We examined the expression of Runx2 and its relationship with oestrogen receptor (ER) and progesterone receptor (PR) in breast cancer cell lines and tissues.
Resumo:
Background We had previously established that inactivation of RUNX3 occurs by frequent promoter hypermethylation and protein mislocalization in invasive ductal carcinomas (IDC) of breast. Here, we hypothesize that inactivation of RUNX3 occurring in ductal carcinoma in situ (DCIS) represent early event in breast carcinogenesis. Methods The study cohort of 40 patients included 17 pure DCIS cases and 23 cases of DCIS with associated IDC (DCIS-IDC). The DCIS and IDC components of mixed cases were manually microdissected to permit separate evaluation. All the 63 samples including 17 pure DCIS, 23 samples each of DCIS and IDC of DCIS-IDC cases were analyzed for RUNX3 protein expression using R3-6E9 monoclonal antibody as well as promoter methylation status by methylation specific PCR. Results Compared to matched normal breast samples (4 of 40, 10%), DCIS (35 of 40, 88%) and IDC (21 of 23, 91%) exhibited significant RUNX3 inactivation (P
Resumo:
Proteomic and transcriptomic platforms both play important roles in cancer research, with differing strengths and limitations. Here, we describe a proteo-transcriptomic integrative strategy for discovering novel cancer biomarkers, combining the direct visualization of differentially expressed proteins with the high-throughput scale of gene expression profiling. Using breast cancer as a case example, we generated comprehensive two-dimensional electrophoresis (2DE)/mass spectrometry (MS) proteomic maps of cancer (MCF-7 and HCC-38) and control (CCD-1059Sk) cell lines, identifying 1724 expressed protein spots representing 484 different protein species. The differentially expressed cell-line proteins were then mapped to mRNA transcript databases of cancer cell lines and primary breast tumors to identify candidate biomarkers that were concordantly expressed at the gene expression level. Of the top nine selected biomarker candidates, we reidentified ANX1, a protein previously reported to be differentially expressed in breast cancers and normal tissues, and validated three other novel candidates, CRAB, 6PGL, and CAZ2, as differentially expressed proteins by immunohistochemistry on breast tissue microarrays. In total, close to half (4/9) of our protein biomarker candidates were successfully validated. Our study thus illustrates how the systematic integration of proteomic and transcriptomic data from both cell line and primary tissue samples can prove advantageous for accelerating cancer biomarker discovery.
Resumo:
Understanding the molecular etiology and heterogeneity of disease has a direct effect on cancer therapeutics. To identify novel molecular changes associated with breast cancer progression, we conducted phosphoproteomics of the MCF10AT model comprising isogenic, ErbB2- and ErbB3-positive, xenograft-derived cell lines that mimic different stages of breast cancer. Using in vitro animal model and clinical breast samples, our study revealed a marked reduction of epidermal growth factor receptor (EGFR) expression with breast cancer progression. Such diminution of EGFR expression was associated with increased resistance to Gefitinib/Iressa in vitro. Fluorescence in situ hybridization showed that loss of EGFR gene copy number was one of the key mechanisms behind the low/null expression of EGFR in clinical breast tumors. Statistical analysis on the immunohistochemistry data of EGFR expression from 93 matched normal and breast tumor samples showed that (a) diminished EGFR expression could. be detected as early as in the preneoplastic lesion (ductal carcinoma in situ) and this culminated in invasive carcinomas; (b) EGFR expression levels could distinguish between normal tissue versus carcinoma in situ and invasive carcinoma with high statistical significance (P