203 resultados para Histone genes
Resumo:
Histone deacetylases (HDACs) are a family of enzymes that remove acetyl groups from lysine residues of histone proteins, a modification that results in epigenetic modulation of gene expression. Although originally shown to be involved in cancer and neurological disease, HDACs are also found to play crucial roles in arteriosclerosis. This review summarizes the effects of HDACs and HDAC inhibitors on proliferation, migration, and apoptosis of endothelial and smooth muscle cells. In addition, an updated discussion of HDACs' recently discovered effects on stem cell differentiation and atherosclerosis is provided. Overall, HDACs appear to be promising therapeutic targets for the treatment of arteriosclerosis and other cardiovascular diseases.
Resumo:
We have previously demonstrated that histone deacetylase 7 (HDAC7) expression and splicing play an important role in smooth muscle cell (SMC) differentiation from embryonic stem (ES) cells, but the molecular mechanisms of increased HDAC7 expression during SMC differentiation are currently unknown. In this study, we found that platelet-derived growth factor-BB (PDGF-BB) induced a 3-fold increase in the transcripts of HDAC7 in differentiating ES cells. Importantly, our data also revealed that PDGF-BB regulated HDAC7 expression not through phosphorylation of HDAC7 but through transcriptional activation. By dissecting its promoters with progressive deletion analysis, we identified the sequence between -343 and -292 bp in the 5'-flanking region of the Hdac7 gene promoter as the minimal PDGF-BB-responsive element, which contains one binding site for the transcription factor, specificity protein 1 (Sp1). Mutation of the Sp1 site within this PDGF-BB-responsive element abolished PDGF-BB-induced HDAC7 activity. PDGF-BB treatment enhanced Sp1 binding to the Hdac7 promoter in differentiated SMCs in vivo as demonstrated by the chromatin immunoprecipitation assay. Moreover, we also demonstrated that knockdown of Sp1 abrogated PDGF-BB-induced HDAC7 up-regulation and SMC differentiation gene expression in differentiating ES cells, although enforced expression of Sp1 alone was sufficient to increase the activity of the Hdac7 promoter and expression levels of SMC differentiation genes. Importantly, we further demonstrated that HDAC7 was required for Sp1-induced SMC differentiation of gene expression. Our data suggest that Sp1 plays an important role in the regulation of Hdac7 gene expression in SMC differentiation from ES cells. These findings provide novel molecular insights into the regulation of HDAC7 and enhance our knowledge in SMC differentiation and vessel formation during embryonic development.
Resumo:
Histone deacetylase 3 (HDAC3) is known to play a crucial role in the differentiation of endothelial progenitors. The role of HDAC3 in mature endothelial cells, however, is not well understood. Here, we investigated the function of HDAC3 in preserving endothelial integrity in areas of disturbed blood flow, ie, bifurcation areas prone to atherosclerosis development.
Resumo:
Histone methylation is a dynamic and reversible process proposed to directly impact on stem cell fate. The Jumonji (JmjC) domain-containing family of demethylases comprises 27 members which can demethylate mono-, di- and tri-methylated lysine residues of histone (or non-histone) targets. To evaluate their role in regulation of hematopoietic stem cell (HSC) behaviour we performed a RNAi-based screen and found that demethylases JARID1B (H3K4) and JHDM1F (H3K9) play opposing roles in regulation of HSC activity. Decrease in Jarid1b levels correlated with an in vitro expansion of HSC with preserved long term in vivo lympho-myeloid differentiation potential. Jarid1b knockdown was associated with an increase in expression levels of 5’ Hoxa cluster genes and CxCl5 , and reduced levels of Pu.1, Egr1 and Cav1. shRNA against Jhdmlf, in contrast, impaired hematopoietic reconstitution of bone marrow cells. Together, our studies identified Jarid1b as a negative, and Jhdmlf as a positive regulator of HSC activity.
Resumo:
Objective: We tested the hypothesis that patients with difficult asthma have an increased frequency of certain genotypes that predispose them to asthma exacerbations and poor asthma control.
Methods: A total of 180 Caucasian children with confirmed asthma diagnosis were selected from two phenotypic groups; difficult (n = 112) versus mild/moderate asthma (n = 68) groups. All patients were screened for 19 polymorphisms in 9 candidate genes to evaluate their association with difficult asthma.
Key Results: The results indicated that LTA4H A-9188.G, TNFa G-308.A and IL-4Ra A1727.G polymorphisms were significantly associated with the development of difficult asthma in paediatric patients (p,0.001, p = 0.019 and p = 0.037, respectively). Haplotype analysis also revealed two haplotypes (ATA haplotype of IL-4Ra A1199.C, IL-4Ra T1570.C and IL- 4Ra A1727.G and CA haplotype of TNFa C-863.A and TNFa G-308.A polymorphisms) which were significantly associated with difficult asthma in children (p = 0.04 and p = 0.018, respectively).
Conclusions and Clinical Relevance: The study revealed multiple SNPs and haplotypes in LTA4H, TNFa and IL4-Ra genes which constitute risk factors for the development of difficult asthma in children. Of particular interest is the LTA4H A- 9188.G polymorphism which has been reported, for the first time, to have strong association with severe asthma in children. Our results suggest that screening for patients with this genetic marker could help characterise the heterogeneity of responses to leukotriene-modifying medications and, hence, facilitate targeting these therapies to the subset of patients who are most likely to gain benefit. ©2013 Almomani et al.
Resumo:
Large regions of recurrent genomic loss are common in cancers; however, with a few well-characterized exceptions, how they contribute to tumor pathogenesis remains largely obscure. Here we identified primate-restricted imprinting of a gene cluster on chromosome 20 in the region commonly deleted in chronic myeloid malignancies. We showed that a single heterozygous 20q deletion consistently resulted in the complete loss of expression of the imprinted genes L3MBTL1 and SGK2, indicative of a pathogenetic role for loss of the active paternally inherited locus. Concomitant loss of both L3MBTL1 and SGK2 dysregulated erythropoiesis and megakaryopoiesis, 2 lineages commonly affected in chronic myeloid malignancies, with distinct consequences in each lineage. We demonstrated that L3MBTL1 and SGK2 collaborated in the transcriptional regulation of MYC by influencing different aspects of chromatin structure. L3MBTL1 is known to regulate nucleosomal compaction, and we here showed that SGK2 inactivated BRG1, a key ATP-dependent helicase within the SWI/SNF complex that regulates nucleosomal positioning. These results demonstrate a link between an imprinted gene cluster and malignancy, reveal a new pathogenetic mechanism associated with acquired regions of genomic loss, and underline the complex molecular and cellular consequences of "simple" cancer-associated chromosome deletions.
Resumo:
Type 1 diabetes (T1D) increases risk of the development of microvascular complications and cardiovascular disease (CVD). Dyslipidemia is a common risk factor in the pathogenesis of both CVD and diabetic nephropathy (DN), with CVD identified as the primary cause of death in patients with DN. In light of this commonality, we assessed single nucleotide polymorphisms (SNPs) in thirty-seven key genetic loci previously associated with dyslipidemia in a T1D cohort using a casecontrol design. SNPs (n = 53) were genotyped using Sequenom in 1467 individuals with T1D (718 cases with proteinuric nephropathy and 749 controls without nephropathy i.e. normal albumin excretion). Cases and controls were white and recruited from the UK and Ireland. Association analyses were performed using PLINK to compare allele frequencies in cases and controls. In a sensitivity analysis, samples from control individuals with reduced renal function (estimated glomerular filtration rate,60 ml/min/1.73 m2) were excluded. Correction for multiple testing was performed by permutation testing. A total of 1394 samples passed quality control filters. Following regression analysis adjusted by collection center, gender, duration of diabetes, and average HbA1c, two SNPs were significantly associated with DN. rs4420638 in the APOC1 region (odds ratio [OR] = 1.51; confidence intervals [CI]: 1.19–1.91; P = 0.001) and rs1532624 in CETP (OR = 0.82; CI: 0.69–0.99; P = 0.034); rs4420638 was also significantly associated in a sensitivity analysis (P = 0.016) together with rs7679 (P = 0.027). However, no association was significant following correction for multiple testing. Subgroup analysis of end-stage renal disease status failed to reveal any association. Our results suggest common variants associated with dyslipidemia are not strongly associated with DN in T1D among white individuals. Our findings, cannot entirely exclude these key genes which are central to the process of dyslipidemia, from involvement in DN pathogenesis as our study had limited power to detect variants of small effect size. Analysis in larger independent cohorts is required.
Resumo:
Background: Renal interstitial fibrosis and glomerular sclerosis are hallmarks of diabetic nephropathy (DN) and several studies have implicated members of the WNT pathways in these pathological processes. This study comprehensively examined common genetic variation within the WNT pathway for association with DN.
Methods: Genes within the WNT pathways were selected on the basis of nominal significance and consistent direction of effect in the GENIE meta-analysis dataset. Common SNPs and common haplotypes were examined within the selected WNT pathway genes in a white population with type 1 diabetes, discordant for DN (cases: n = 718; controls: n = 749). SNPs were genotyped using Sequenom or Taqman assays. Association analyses were performed using PLINK, to compare allele and haplotype frequencies in cases and controls. Correction for multiple testing was performed by either permutation testing or using false discovery rate.
Results: A logistic regression model including collection centre, duration of diabetes, and average HbA1c as covariates highlighted three SNPs in GSK3B (rs17810235, rs17471, rs334543), two in DAAM1 (rs1253192, rs1252906) and one in NFAT5 (rs17297207) as being significantly (P< 0.05) associated with DN, however these SNPs did not remain significant after correction for multiple testing. Logistic regression of haplotypes, with ESRD as the outcome, and pairwise interaction analyses did not yield any significant results after correction for multiple testing.
Conclusions: These results indicate that both common SNPs and common haplotypes of WNT pathway genes are not strongly associated with DN. However, this does not completely exclude these or the WNT pathways from association with DN, as unidentified rare genetic or copy number variants could still contribute towards the genetic architecture of DN.© 2013 Kavanagh et al.; licensee BioMed Central Ltd.
Resumo:
Integrating evidence from multiple domains is useful in prioritizing disease candidate genes for subsequent testing. We ranked all known human genes (n = 3819) under linkage peaks in the Irish Study of High-Density Schizophrenia Families using three different evidence domains: 1) a meta-analysis of microarray gene expression results using the Stanley Brain collection, 2) a schizophrenia protein-protein interaction network, and 3) a systematic literature search. Each gene was assigned a domain-specific p-value and ranked after evaluating the evidence within each domain. For comparison to this
ranking process, a large-scale candidate gene hypothesis was also tested by including genes with Gene Ontology terms related to neurodevelopment. Subsequently, genotypes of 3725 SNPs in 167 genes from a custom Illumina iSelect array were used to evaluate the top ranked vs. hypothesis selected genes. Seventy-three genes were both highly ranked and involved in neurodevelopment (category 1) while 42 and 52 genes were exclusive to neurodevelopment (category 2) or highly ranked (category 3), respectively. The most significant associations were observed in genes PRKG1, PRKCE, and CNTN4 but no individual SNPs were significant after correction for multiple testing. Comparison of the approaches showed an excess of significant tests using the hypothesis-driven neurodevelopment category. Random selection of similar sized genes from two independent genome-wide association studies (GWAS) of schizophrenia showed the excess was unlikely by chance. In a further meta-analysis of three GWAS datasets, four candidate SNPs reached nominal significance. Although gene ranking using integrated sources of prior information did not enrich for significant results in the current experiment, gene selection using an a priori hypothesis (neurodevelopment) was superior to random selection. As such, further development of gene ranking strategies using more carefully selected sources of information is warranted.
Resumo:
Small RNA-mediated chromatin silencing is well characterized for repeated sequences and transposons, but its role in regulating single-copy endogenous genes is unclear. We have identified two small RNAs (30 and 24 nucleotides) corresponding to the reverse strand 3' to the canonical poly(A) site of FLOWERING LOCUS C (FLC), an Arabidopsis gene encoding a repressor of flowering. Genome searches suggest that these RNAs originate from the FLC locus in a genomic region lacking repeats. The 24-nt small RNA, which is most abundant in developing fruits, is absent in mutants defective in RNA polymerase IVa, RNA-DEPENDENT RNA POLYMERASE 2, and DICER-LIKE 3, components required for RNAi-mediated chromatin silencing. The corresponding genomic region shows histone 3 lysine 9 dimethylation, which was reduced in a dcl2,3,4 triple mutant. Investigations into the origins of the small RNAs revealed a polymerase IVa-dependent spliced, antisense transcript covering the 3' FLC region. Mutation of this genomic region by T-DNA insertion led to FLC misexpression and delayed flowering, suggesting that RNAi-mediated chromatin modification is an important component of endogenous pathways that function to suppress FLC expression.
Resumo:
The requirement of CUL1 for Arabidopsis embryogenesis suggests that Skp1-CUL1-F-box protein (SCF) complexes play important roles during embryo development. Among the 21 Arabidopsis Skp1-like genes (ASKs), it is unknown which ASK gene(s) is essential for embryo development. In this study, we demonstrate a vital role for ASK1 and ASK2 in Arabidopsis embryogenesis and postembryonic development through analysis of the ask1 ask2 double mutant. Our detailed analysis indicates that the double mutations in both ASK1 and ASK2 affect cell division and cell expansion/elongation and cause a developmental delay during embryogenesis and lethality in seedling growth. The expression patterns of ASK1 and ASK2 were examined further and found to be consistent with their roles in embryogenesis and seedling development. We propose that mutations in ASK1 and ASK2 abolish all of the ASK1- and ASK2-based SCF and non-SCF complexes, resulting in alteration of gene expression and leading to defects in growth and development.
Resumo:
The activity of aminoglycosides, used to treat Pseudomonas aeruginosa respiratory infection in cystic fibrosis (CF) patients, is reduced under the anaerobic conditions that reflect the CF lung in vivo. In contrast, a 4:1 (w/w) combination of fosfomycin and tobramycin (F:T), under investigation for use in the treatment of CF lung infection, has increased activity against P. aeruginosa under anaerobic conditions. The aim of this study was to elucidate the mechanisms underlying the increased activity of F:T under anaerobic conditions. Microarray analysis was used to identify the transcriptional basis of increased F:T activity under anaerobic conditions, and key findings were confirmed by microbiological tests including nitrate utilization assays, growth curves and susceptibility testing. Notably, growth in sub-inhibitory concentrations of F:T, but not tobramycin or fosfomycin alone, significantly downregulated (p <0.05) nitrate reductase genes narG and narH, essential for normal anaerobic growth of P. aeruginosa. Under anaerobic conditions, F:T significantly decreased (p
Resumo:
A single base deletion (211delG) in the low density lipoprotein receptor (LDLR) gene was shown to cause familial hypercholesterolaemia (FH) in a large family from Northern Ireland. Twenty-four of 52 family members tested had this mutation, 13 of which were newly diagnosed. Mutation-positive individuals had significantly higher mean total-cholesterol (TC) and LDL-cholesterol (LDL-C) than those without 211delG. LDL-C was a more accurate indicator of disease status than TC, When TC levels alone were considered, in individuals over 16 years, a false negative rate (TC <7.5 mmol/l) of 40% was found; however, this fell to 13% based on inclusion of LDL-C levels. Individuals with coronary artery disease (CAD) had significantly higher TC levels than those without CAD and tended to have tendinous xanthomas (TX) and corneal arcus (CA). Genetic polymorphisms in the angiotensin converting enzyme (ACE) and apolipoprotein (ape) B genes did not appear to be associated with lipid levels or with the clinical severity of the disease; however, the apo E e4 allele did show a lipid-raising effect in individuals with the mutation.
Resumo:
From our linkage study of Irish families with a high density of schizophrenia, we have previously reported evidence for susceptibility genes in regions 5q21-31, 6p24-21, 8p22-21, and 10p15-p11. In this report, we describe the cumulative results from independent genome scans of three a priori random subsets of 90 families each, and from multipoint analysis of all 270 families in ten regions. Of these ten regions, three (13q32, 18p11-q11, and 18q22-23) did not generate scores above the empirical baseline pairwise scan results, and one (6q13-26) generated a weak signal. Six other regions produced more positive pairwise and multipoint results. They showed the following maximum multipoint H-LOD (heterogeneity LOD) and NPL scores: 2p14-13: 0.89 (P = 0.06) and 2.08 (P = 0.02), 4q24-32: 1.84 (P = 0.007) and 1.67 (P = 0.03), 5q21-31: 2.88 (P= 0.0007), and 2.65 (P = 0.002), 6p25-24: 2.13 (P = 0.005) and 3.59 (P = 0.0005), 6p23: 2.42 (P = 0.001) and 3.07 (P = 0.001), 8p22-21: 1.57 (P = 0.01) and 2.56 (P = 0.005), 10p15-11: 2.04 (P = 0.005) and 1.78 (P = 0.03). The degree of 'internal replication' across subsets differed, with 5q, 6p, and 8p being most consistent and 2p and 10p being least consistent. On 6p, the data suggested the presence of two susceptibility genes, in 6p25-24 and 6p23-22. Very few families were positive on more than one region, and little correlation between regions was evident, suggesting substantial locus heterogeneity. The levels of statistical significance were modest, as expected from loci contributing to complex traits. However, our internal replications, when considered along with the positive results obtained in multiple other samples, suggests that most of these six regions are likely to contain genes that influence liability to schizophrenia.
Resumo:
Chromosome 5q22-33 is a region where studies have repeatedly found evidence for linkage to schizophrenia. In this report, we took a stepwise approach to systematically map this region in the Irish Study of High Density Schizophrenia Families (ISHDSF, 267 families, 1337 subjects) sample. We typed 289 SNPs in the critical interval of 8 million basepairs and found a 758 kb interval coding for the SPEC2/PDZ-GEF2/ACSL6 genes to be associated with the disease. Using sex and genotype-conditioned transmission disequilibrium test analyses, we found that 19 of the 24 typed markers were associated with the disease and the associations were sex-specific. We replicated these findings with an Irish case-control sample (657 cases and 414 controls), an Irish parent-proband trio sample (187 families, 564 subjects), a German nuclear family sample (211 families, 751 subjects) and a Pittsburgh nuclear family sample (247 families, 729 subjects). In all four samples, we replicated the sex-specific associations at the levels of both individual markers and haplotypes using sex- and genotype-conditioned analyses. Three risk haplotypes were identified in the five samples, and each haplotype was found in at least two samples. Consistent with the discovery of multiple estrogen-response elements in this region, our data showed that the impact of these haplotypes on risk for schizophrenia differed in males and females. From these data, we concluded that haplotypes underlying the SPEC2/PDZ-GEF2/ACSL6 region are associated with schizophrenia. However, due to the extended high LD in this region, we were unable to distinguish whether the association signals came from one or more of these genes.