151 resultados para Espalhamento - Raman
Resumo:
Large, thin (50 mu m) dry polymer sheets containing numerous surface-enhanced Raman spectroscopy (SERS) active Ag nanopartide aggregates have been prepared by drying aqueous mixtures of hydroxyethylcelloulose (HEC) and preaggregated Ag colloid in 10 x 10 cm molds. In these dry films, the particle aggregates are protected from the environment during storage and are easy to handle; for example, they can be cut to size with scissors. When in use, the highly swellable HEC polymer allowed the films to rapidly absorb aqueous analyte solutions while simultaneously releasing the Ag nanoparticle aggregates to interact with the analyte and generate large SERS signals. Either the films could be immersed in the analyte solution or 5 mu L droplets were applied to the surface; in the latter method, the local swelling caused the active area to dome upward, but the swollen film remained physically robust and could be handled as required. Importantly, encapsulation and release did not significantly compromise the SERS performance of the colloid; the signals given by the swollen films were similar to the very high signals obtained from the parent citrate-reduced colloid and were an order of magnitude larger than a commercially available nanoparticle substrate. These "Poly-SERS" films retained 70% of their SERS activity after being stored for 1 year in air. The films were sufficiently homogeneous to give a standard deviation of 3.2% in the absolute signal levels obtained from a test analyte, primarily due to the films' ability to suppress "coffee ring" drying marks, which meant that quantitative analysis without an internal standard was possible. The majority of the work used aqueous thiophenol as the test analyte; however, preliminary studies showed that the Poly-SERS films could also be used with nonaqueous solvents and for a range of other analytes including theophylline, a therapeutic drug, at a concentration as low as 1.0 x 10(-5) mol dm(-3) (1.8 mg/dm(3)), well below the sensitivity required for theophylline monitoring where the target range is 10-20 mg/dm(3).
Resumo:
The intensity of surface enhanced Raman scattering from benzoic acid derivatives on mildly roughened, thermally evaporated Ag films shows a remarkably strong dependence on metal grain size. Large grained (slowly deposited) films give a superior response, by up to a factor of 10, to small grained (quickly deposited) films, with films of intermediate grain size yielding intermediate results. The optical field amplification underlying the enhancement mechanism is due to the excitation of surface plasmon polaritons (SPPs). Since surface roughness characteristics, as determined by STM, remain relatively constant as a function of deposition rate, it is argued that the contrast in Raman scattering is due to differences in elastic grain boundary scattering of SPPs (leading to different degrees of internal SPP damping), rather than differences in the interaction of SPPs with surface inhomogeneities.
Resumo:
The use of Raman and anti-stokes Raman spectroscopy to investigate the effect of exposure to high power laser radiation on the crystalline phases of TiO2 has been investigated. Measurement of the changes, over several time integrals, in the Raman and anti-stokes Raman of TiO2 spectra with exposure to laser radiation is reported. Raman and anti-stokes Raman provide detail on both the structure and the kinetic process of changes in crystalline phases in the titania material. The effect of laser exposure resulted in the generation of increasing amounts of the rutile crystalline phase from the anatase crystalline phase during exposure. The Raman spectra displayed bands at 144 cm-1 (A1g), 197 cm-1 (Eg), 398 cm-1 (B1g), 515 cm-1 (A1g), and 640 cm-1 (Eg) assigned to anatase which were replaced by bands at 143 cm-1 (B1g), 235 cm-1 (2 phonon process), 448 cm-1 (Eg) and 612 cm-1 (A1g) which were assigned to rutile. This indicated that laser irradiation of TiO2 changes the crystalline phase from anatase to rutile. Raman and anti-stokes Raman are highly sensitive to the crystalline forms of TiO2 and allow characterisation of the effect of laser irradiation upon TiO2. This technique would also be applicable as an in situ method for monitoring changes during the laser irradiation process
Resumo:
Modification of citrate and hydroxylamine reduced Ag colloids with thiocholine bromide, a thiol functionalized quaternary ammonium salt, creates particles where the zeta potential is switched from the normal values of ca. -50 mV to ca. + 50 mV. These colloids are stable but can be aggregated with metal salts in much the same way as the parent colloids. They are excellent SERS substrates for detection of anionic targets since their positive zeta potentials promote adsorption of negatively charged ions. This is important because the vast majority of published SERS studies involve cationic or neutral targets. Moreover, the fact that the modifier is a quaternary ammonium ion means that the negative surface charge is maintained even at alkaline pH. The modified colloids can be used to detect compounds which cannot be detected using conventional negatively-charged citrate or hydroxylamine reduced metal nanoparticles, for example the detection limit was 5.0 x 10(-5) M for perchlorate and
Resumo:
PURPOSE. Raman spectroscopy is an effective probe of advanced glycation end products (AGEs) in Bruch's membrane. However, because it is the outermost layer of the retina, this extracellular matrix is difficult to analyze in vivo with current technology. The sclera shares many compositional characteristics with Bruch's membrane, but it is much easier to access for in vivo Raman analysis. This study investigated whether sclera could act as a surrogate tissue for Raman-based investigation of pathogenic AGEs in Bruch's membrane.
METHODS. Human sclera and Bruch's membrane were dissected from postmortem eyes (n = 67) across a wide age range (33-92 years) and were probed by Raman spectroscopy. The biochemical composition, AGEs, and their age-related trends were determined from data reduction of the Raman spectra and compared for the two tissues.
RESULTS. Raman microscopy demonstrated that Bruch's membrane and sclera are composed of a similar range of biomolecules but with distinct relative quantities, such as in the heme/collagen and the elastin/collagen ratios. Both tissues accumulated AGEs, and these correlated with chronological age (R(2) = 0.824 and R(2) = 0.717 for sclera and Bruch's membrane, respectively). The sclera accumulated AGE adducts at a lower rate than Bruch's membrane, and the models of overall age-related changes exhibited a lower rate (one-fourth that of Bruch's membrane) but a significant increase with age (P <0.05).
CONCLUSIONS. The results suggest that the sclera is a viable surrogate marker for estimating AGE accumulation in Bruch's membrane and for reliably predicting chronological age. These findings also suggest that sclera could be a useful target tissue for future patient-based, Raman spectroscopy studies. (Invest Ophthalmol Vis Sci 2011;52:1593-1598) DOI:10.1167/iovs.10-6554
Resumo:
With increasing excitation wavelength from 514 to 782 nm, a significant difference in the Raman spectra of SiC nanorods was observed as compared to bulk material. The intensity ratio of the LO mode to that of the IF mode increases with the excitation wavelength increasing. This has been identified as resonant Raman scattering caused by Fröhlich interaction.
Resumo:
Abnormal anti-Stokes Raman scattering (AASR) was unambiguously observed in carbon nanotubes (CNT's). In contrast to traditional Raman scattering theory, the absolute value of the Raman frequency of the anti-Stokes peak is not the same as that of the corresponding Stokes peak. It was demonstrated that AASR scattering originates from the unique nanoscale cylindrical structure of CNT's that can be considered naturally as a graphite structure with an intrinsic defect from its rolling. The double-resonance Raman scattering theory was applied to interpret the scattering mechanism of the AASR phenomenon successfully and quantitatively.
Resumo:
The influence of polarization on the plasmon modes excited in tip-enhanced near-field optical microscopy have been investigated using the Finite Difference Time Domain Method. Analysis of the calculated results have laid particular emphasis on the ability to align local field enhancements with the orientation of molecules in order to optimize Raman signals, with particular relevance to recent experimental work on carbon nanotubes.
Resumo:
The Raman spectra of carbon nanotubes prepared by catalytic (C-CNT) and d.c. arc discharge (D-CNT) methods are reported. A previously unnoticed third-order Raman peak at ca. 4248 cm-1 was observed in the Raman spectrum of D-CNT. The Raman features of D-CNT and C-CNT are similar to those of highly oriented pyrolytic graphite (HOPG) and active carbon, respectively. The data also suggest that the increase in disorder in D-CNT compared with HOPG is due to structural defects in D-CNT. © 1997 by John Wiley & Sons, Ltd.