273 resultados para Episodic Memory
Resumo:
For modern FPGA, implementation of memory intensive processing applications such as high end image and video processing systems necessitates manual design of complex multilevel memory hierarchies incorporating off-chip DDR and onchip BRAM and LUT RAM. In fact, automated synthesis of multi-level memory hierarchies is an open problem facing high level synthesis technologies for FPGA devices. In this paper we describe the first automated solution to this problem.
By exploiting a novel dataflow application modelling dialect, known as Valved Dataflow, we show for the first time how, not only can such architectures be automatically derived, but also that the resulting implementations support real-time processing for current image processing application standards such as H.264. We demonstrate the viability of this approach by reporting the performance and cost of hierarchies automatically generated for Motion Estimation, Matrix Multiplication and Sobel Edge Detection applications on Virtex-5 FPGA.
Resumo:
Realising high performance image and signal processing
applications on modern FPGA presents a challenging implementation problem due to the large data frames streaming through these systems. Specifically, to meet the high bandwidth and data storage demands of these applications, complex hierarchical memory architectures must be manually specified
at the Register Transfer Level (RTL). Automated approaches which convert high-level operation descriptions, for instance in the form of C programs, to an FPGA architecture, are unable to automatically realise such architectures. This paper
presents a solution to this problem. It presents a compiler to automatically derive such memory architectures from a C program. By transforming the input C program to a unique dataflow modelling dialect, known as Valved Dataflow (VDF), a mapping and synthesis approach developed for this dialect can
be exploited to automatically create high performance image and video processing architectures. Memory intensive C kernels for Motion Estimation (CIF Frames at 30 fps), Matrix Multiplication (128x128 @ 500 iter/sec) and Sobel Edge Detection (720p @ 30 fps), which are unrealisable by current state-of-the-art C-based synthesis tools, are automatically derived from a C description of the algorithm.
Resumo:
The book chapter examines the history of New Orleans cemeteries and their popular image, especially in regard to the tourism industry.
Resumo:
Oligomers of beta-amyloid (Aß) are implicated in the early memory impairment seen in Alzheimer's disease before to the onset of discernable neurodegeneration. Here, the capacity of a novel orally bioavailable, central nervous system-penetrating small molecule 5-aryloxypyrimidine, SEN1500, to prevent cell-derived (7PA2 [conditioned medium] CM) Aß-induced deficits in synaptic plasticity and learned behavior was assessed. Biochemically, SEN1500 bound to Aß monomer and oligomers, produced a reduction in thioflavin-T fluorescence, and protected a neuronal cell line and primary cortical neurons exposed to synthetic soluble oligomeric Aß1-42. Electrophysiologically, SEN1500 alleviated the in vitro depression of long-term potentiation induced by both synthetic Aß1-42 and 7PA2 CM, and alleviated the in vivo depression of long-term potentiation induced by 7PA2 CM, after systemic administration. Behaviorally, oral administration of SEN1500 significantly reduced memory-related deficits in operant responding induced after intracerebroventricular injection of 7PA2 CM. SEN1500 reduced cytotoxicity, acute synaptotoxicity, and behavioral deterioration after in vitro and in vivo exposure to synthetic Aß and 7PA2 CM, and shows promise for development as a clinically viable disease-modifying Alzheimer's disease treatment. © 2013 Elsevier Inc.
Resumo:
Between 2006 and 2007, the Prisons Memory Archive (PMA) filmed participants, including former prisoners, prison staff, teachers, chaplains, visitors, solicitors and welfare workers back inside the Maze/Long Kesh Prison and Armagh Gaol. They shared the memory of the time spent in these prisons during the period of political violence from 1970 - 2000 in Northern Ireland, commonly known as the Troubles. Underpinning the overall methodology is co-ownership of the material, which gives participants the right to veto as well as to participate in the processes of editing and exhibiting their stories, so prioritising the value of co-authorship of their stories. The PMA adopted life-story interviewing techniques with the empty sites stimulating participants’ memory while they walked and talked their way around the empty sites. A third feature is inclusivity: the archive holds stories from across the full spectrum of the prison experience. A selection of the material, with accompanying context and links is available online www.prisonsmemoryarchive.com
Further Information:
The protocols of inclusivity, co-ownership and life-story telling make this collection significant as an initiative that engages with contemporary problems of how to negotiate narratives about a conflicted past in a society emerging out of violence. Inclusivity means that prison staff, prisoners, governors, chaplains, tutors and visitors have participated, relating their individual and collective experiences, which sit side by side on the PMA website. Co-ownership addresses the issues of ethics and sensitivity, allowing key constituencies to be involved. Life-story telling, based on oral history methodologies allows participants to be the authors of their own stories, crucial when dealing with sensitive issues from a violent past. The website hosts a selection of excerpts, e.g. the Armagh Stories page shows excerpts from 15 participants, while the Maze and Long Kesh Prison page offers interactive access to 24 participants from that prison. Using an interactive documentary structure, the site offers users opportunities to navigate their own way through the material and encourages them to hear and see the ‘other’, central to attempts at encouraging dialogue in a divided society. Further, public discussions have been held after screening of excerpts with community groups in the following locations - Belfast, Newtownabbey, Derry, Armagh, Enniskillen, London, Cork, Maynooth, Clones, and Monaghan. Extracts have been screened at international academic conferences in Valencia, Australia, Tartu, Estonia, Prague, and York. A dataset of the content, with description and links, is available for REF purposes.
Resumo:
Mechanisms for visuospatial cognition are often inferred directly from errors in behavioral reports of remembered target direction. For example, gaze-centered target representations for reach were first inferred from reach overshoots of target location relative to gaze. Here, we report evidence for the hypothesis that these gaze-dependent reach errors stem predominantly from misestimates of hand rather than target position, as was assumed in all previous studies. Subjects showed typical gaze-dependent overshoots in complete darkness, but these errors were entirely suppressed by continuous visual feedback of the finger. This manipulation could not affect target representations, so the suppressed gaze-dependent errors must have come from misestimates of hand position, likely arising in a gaze-dependent transformation of hand position signals into visual coordinates. This finding has broad implications for any task involving localization of visual targets relative to unseen limbs, in both healthy individuals and patient populations, and shows that response-related transformations cannot be ignored when deducing the sources of gaze-related errors.
Resumo:
A new method is proposed which reduces the size of the memory needed to implement multirate vector quantizers. Investigations have shown that the performance of the coders implemented using this approach is comparable to that obtained from standard systems. The proposed method can therefore be used to reduce the hardware required to implement real-time speech coders.
Resumo:
In this paper, a novel configurable content addressable memory (CCAM) cell is proposed, to increase the flexibility of embedded CAMs for SoC employment. It can be easily configured as a Binary CAM (BiCAM) or Ternary CAM (TCAM) without significant penalty of power consumption or searching speed. A 64x128 CCAM array has been built and verified through simulation. ©2007 IEEE.
Resumo:
Problem-solving ability was investigated in 25 DSM-IIIR schizophrenic (SC) patients using the Tower of Hanoi (TOH) task. Their performance was compared to that of: (1) 22 patients with neurosurgical unilateral prefrontal lesions, 11 left (LF) and 10 right hemisphere (RF); (2) 38 patients with unilateral temporal lobectomies, 19 left (LT) and 19 right (RT); and (3) 44 matched control subjects. Like the RT and LF group, the schizophrenics were significantly impaired on the TOH. The deficit shown by the schizophrenic group was equivalent whether or not the problems to be solved included goal-subgoal conflicts, unlike the LF group who were impaired specifically on these problems. The nature of the SC deficit was also distinct from that of the RT group, in that the problem-solving deficit remained after controlling for the effects of spatial memory performance. This study indicates, therefore, that neither focal frontal nor temporal lobe damage sustained in adult life is a sufficient explanation for the problem-solving deficits found in patients with schizophrenia. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Multiple-cue probability learning (MCPL) involves learning to predict a criterion when outcome feedback is provided for multiple cues. A great deal of research suggests that working memory capacity (WMC) is involved in a wide range of tasks that draw on higher level cognitive processes. In three experiments, we examined the role of WMC in MCPL by introducing measures of working memory capacity, as well as other task manipulations. While individual differences in WMC positively predicted performance in some kinds of multiple-cue tasks, performance on other tasks was entirely unrelated to these differences. Performance on tasks that contained negative cues was correlated with working memory capacity, as well as measures of explicit knowledge obtained in the learning process. When the relevant cues predicted positively, however, WMC became irrelevant. The results are discussed in terms of controlled and automatic processes in learning and judgement. © 2011 The Experimental Psychology Society.
Resumo:
Children born very preterm, even when intelligence is broadly normal, often experience selective difficulties in executive function and visual-spatial processing. Development of structural cortical connectivity is known to be altered in this group, and functional magnetic resonance imaging (fMRI) evidence indicates that very preterm children recruit different patterns of functional connectivity between cortical regions during cognition. Synchronization of neural oscillations across brain areas has been proposed as a mechanism for dynamically assigning functional coupling to support perceptual and cognitive processing, but little is known about what role oscillatory synchronization may play in the altered neurocognitive development of very preterm children. To investigate this, we recorded magnetoencephalographic (MEG) activity while 7-8 year old children born very preterm and age-matched full-term controls performed a visual short-term memory task. Very preterm children exhibited reduced long-range synchronization in the alpha-band during visual short-term memory retention, indicating that cortical alpha rhythms may play a critical role in altered patterns functional connectivity expressed by this population during cognitive and perceptual processing. Long-range alpha-band synchronization was also correlated with task performance and visual-perceptual ability within the very preterm group, indicating that altered alpha oscillatory mechanisms mediating transient functional integration between cortical regions may be relevant to selective problems in neurocognitive development in this vulnerable population at school age.
Resumo:
We examined the role of physiological regulation (heart rate, vagal tone, and salivary cortisol) in short-term memory in preterm and full-term 6-month-old infants. Using a deferred imitation task to evaluate social learning and memory recall, an experimenter modeled three novel behaviors (removing, shaking, and replacing a glove) on a puppet. Infants were tested immediately after being shown the behaviors as well as following a 10-min delay. We found that greater suppression of vagal tone was related to better memory recall in full-term infants tested immediately after the demonstration as well as in preterm infants tested later after a 10-min delay. We also found that preterm infants showed greater coordination of physiology (i.e., tighter coupling of vagal tone, heart rate, and cortisol) at rest and during retrieval than full-term infants. These findings provide new evidence of the important links between changes in autonomic activity and memory recall in infancy. They also raise the intriguing possibility that social learning, imitation behavior, and the formation of new memories are modulated by autonomic activity that is coordinated differently in preterm and full-term infants.
Resumo:
Local alpha-band synchronization has been associated with both cortical idling and active inhibition. Recent evidence, however, suggests that long-range alpha synchronization increases functional coupling between cortical regions. We demonstrate increased long-range alpha and beta band phase synchronization during short-term memory retention in children 6-10 years of age. Furthermore, whereas alpha-band synchronization between posterior cortex and other regions is increased during retention, local alpha-band synchronization over posterior cortex is reduced. This constitutes a functional dissociation for alpha synchronization across local and long-range cortical scales. We interpret long-range synchronization as reflecting functional integration within a network of frontal and visual cortical regions. Local desynchronization of alpha rhythms over posterior cortex, conversely, likely arises because of increased engagement of visual cortex during retention.