150 resultados para DIETARY-CADMIUM
Resumo:
Cadmium and lead were determined in fruit and vegetable produce (~1300 samples) collected from a field and market basket study of locally grown produce from the South-West of Britain (Devon and Cornwall). These were compared with similarly locally grown produce from the North-East of Britain (Aberdeenshire). The concentrations of cadmium and lead in the market basket produce were compared to the maximum levels (ML) set by the European Union (EU). For cadmium 0.2% of the samples exceeded the ML, and 0.6% of the samples exceeded the ML for lead. The location of cadmium and lead in potatoes was performed using laser ablation ICP-MS. All tested samples exhibited higher lead concentrations, and most exhibited increased concentrations of cadmium in the potato skin compared to the flesh. The concentrations of cadmium and lead found in fruits and vegetables sampled during this study do not increase concern about risk to human health.
Resumo:
Research into the composition of cereal grains is motivated by increased interest in food quality. Here multi-element analysis is conducted on leaves and grain of the Bala x Azucena rice mapping population grown in the field. Quantitative trait loci (QTLs) for the concentration of 17 elements were detected, revealing 36 QTLs for leaves and 41 for grains. Epistasis was detected for most elements. There was very little correlation between leaf and grain element concentrations. For selenium, lead, phosphorus and magnesium QTLs were detected in the same location for both tissues. In general, there were no major QTL clusters, suggesting separate regulation of each element. QTLs for grain iron, zinc, molybdenum and selenium are potential targets for marker assisted selection to improve seed nutritional quality. An epistatic interaction for grain arsenic also looks promising to decrease the concentration of this carcinogenic element. © Springer Science+Business Media B.V. 2009.
Resumo:
Scots pine seedlings colonized by ectomycorrhizal (ECM) fungi from natural soil inoculum were exposed to a range of Cd or Zn concentrations to investigate the effects of metals on ECM fungi-Scots pine associations in a realistic soil environment. Experiments focused on the relationship between the sensitivity of ECM fungi and their host plants, the influence of metals on ECM community dynamics on Scots pine roots, and the effects of metal exposure on ECM colonization from soil-borne propagules. Ectomycorrhizal colonization was inhibited by Cd and Zn, with a decrease in the proportion of ECM-colonized root tips. Shoot and root biomass, total root length, and total root-tip density, however, were unaffected by Cd or Zn. A decrease in the diversity of ECM morphotypes also occurred, which could have a negative effect on tree vigor. Overall, colonization by ECM fungi was more sensitive than seedling growth to Cd and Zn, and this could have serious implications for successful tree establishment on metal-contaminated soils.
Resumo:
PURPOSE: Treatment of prostate cancer with androgen deprivation therapy (ADT) is associated with an increased fat mass, decreased lean mass, increased fatigue and a reduction in quality of life (QoL). The aim of this study was to evaluate the efficacy of a 6-month dietary and physical activity intervention for prostate cancer patients receiving ADT, to help minimise these side effects.
METHODS: Patients (n = 94) were recruited to this study if they were planned to receive ADT for prostate cancer for at least 6 months. Men randomised to the intervention arm received a dietary and exercise intervention, commensurate with UK healthy eating and physical activity recommendations. The primary outcome of interest was body composition; secondary outcomes included fatigue, QoL, functional capacity, stress and dietary change.
RESULTS: The intervention group had a significant (p < 0.001) reduction in weight, body mass index and percentage fat mass compared to the control group at 6 months; the between-group differences were -3.3 kg (95 % confidence interval (95 % CI) -4.5, -2.1), -1.1 kg/m(2) (95 % CI -1.5, -0.7) and -2.1 % (95 % CI -2.8, -1.4), respectively, after adjustment for baseline values. The intervention resulted in improvements in functional capacity (p < 0.001) and dietary intakes but did not significantly impact fatigue, QoL or stress scores at endpoint.
CONCLUSIONS: A 6-month diet and physical activity intervention can minimise the adverse body composition changes associated with ADT.
IMPLICATIONS FOR CANCER SURVIVORS: This study shows that a pragmatic lifestyle intervention is feasible and can have a positive impact on health behaviours and other key outcomes in men with prostate cancer receiving ADT.
Resumo:
Increasingly invasive bladder cancer cells lines displayed insensitivity toward a panel of dietary-derived ligands for members of the nuclear receptor superfamily. Insensitivity was defined through altered gene regulatory actions and cell proliferation and reflected both reduced receptor expression and elevated nuclear receptor corepressor 1 (NCOR1) expression. Stable overexpression of NCOR1 in sensitive cells (RT4) resulted in a panel of clones that recapitulated the resistant phenotype in terms of gene regulatory actions and proliferative responses toward ligand. Similarly, silencing RNA approaches to NCOR1 in resistant cells (EJ28) enhanced ligand gene regulatory and proliferation responses, including those mediated by peroxisome proliferator-activated receptor (PPAR) gamma and vitamin D receptor (VDR) receptors. Elevated NCOR1 levels generate an epigenetic lesion to target in resistant cells using the histone deacetylase inhibitor vorinostat, in combination with nuclear receptor ligands. Such treatments revealed strong-additive interactions toward the PPARgamma, VDR and Farnesoid X-activated receptors. Genome-wide microarray and microfluidic quantitative real-time, reverse transcription-polymerase chain reaction approaches, following the targeting of NCOR1 activity and expression, revealed the selective capacity of this corepressor to govern common transcriptional events of underlying networks. Combined these findings suggest that NCOR1 is a selective regulator of nuclear receptors, notably PPARgamma and VDR, and contributes to their loss of sensitivity. Combinations of epigenetic therapies that target NCOR1 may prove effective, even when receptor expression is reduced.
Resumo:
People in developing countries have faced multigenerational undernutrition and are currently undergoing major lifestyle changes, contributing to an epidemic of metabolic diseases, though the underlying mechanisms remain unclear. Using a Wistar rat model of undernutrition over 50 generations, we show that Undernourished rats exhibit low birth-weight, high visceral adiposity (DXA/MRI), and insulin resistance (hyperinsulinemic-euglycemic clamps), compared to age-/gender-matched control rats. Undernourished rats also have higher circulating insulin, homocysteine, endotoxin and leptin levels, lower adiponectin, vitamin B12 and folate levels, and an 8-fold increased susceptibility to Streptozotocin-induced diabetes compared to control rats. Importantly, these metabolic abnormalities are not reversed after two generations of unrestricted access to commercial chow (nutrient recuperation). Altered epigenetic signatures in insulin-2 gene promoter region of Undernourished rats are not reversed by nutrient recuperation, and may contribute to the persistent detrimental metabolic profiles in similar multigenerational undernourished human populations.
Resumo:
SCOPE: Aflatoxin exposure coincides with micronutrient deficiencies in developing countries. Animal feeding studies have postulated that aflatoxin exposure may be exacerbating micronutrient deficiencies. Evidence available in human subjects is limited and inconsistent. The aim of the study was to investigate the relationship between aflatoxin exposure and micronutrient status among young Guinean children.
METHOD AND RESULTS: A total of 305 children (28.8 ± 8.4 months) were recruited at groundnut harvest (rainy season), of which 288 were followed up 6 months later post-harvest (dry season). Blood samples were collected at each visit. Aflatoxin-albumin adduct levels were measured by ELISA. Vitamin A, vitamin E and β-carotene concentrations were measured using HPLC methods. Zinc was measured by atomic absorption spectroscopy. Aflatoxin exposure and micronutrient deficiencies were prevalent in this population and were influenced by season, with levels increasing between harvest and post-harvest. At harvest, children in the highest aflatoxin exposure group, compared to the lowest, were 1.98 (95%CI: 1.00, 3.92) and 3.56 (95%CI: 1.13, 11.15) times more likely to be zinc and vitamin A deficient.
CONCLUSION: Although children with high aflatoxin exposure levels were more likely to be zinc and vitamin A deficient, further research is necessary to determine a cause and effect relationship.
Resumo:
BACKGROUND: Observational studies suggest that patients with heart failure have a tendency to a reduced status of a number of micronutrients and that this may be associated with an adverse prognosis. A small number of studies also suggest that patients with heart failure may have reduced dietary intake of micronutrients, a possible mechanism for reduced status.
OBJECTIVE: The aims of this study were to assess dietary micronutrient intake and micronutrient status in a group of patients with heart failure.
METHODS: Dietary intake was assessed in 79 outpatients with chronic stable heart failure with a reduced ejection fraction using a validated food frequency questionnaire. Blood concentrations of a number of micronutrients, including vitamin D, were measured in fasting blood samples, drawn at the time of food frequency questionnaire completion.
RESULTS: More than 20% of patients reported intakes less than the reference nutrient intake or recommended intake for riboflavin, vitamin D, vitamin A, calcium, magnesium, potassium, zinc, copper, selenium, and iodine. More than 5% of patients reported intakes less than the lower reference nutrient intake or minimum recommended intake for riboflavin, vitamin D, vitamin A, calcium, magnesium, potassium, zinc, selenium, and iodine. Vitamin D deficiency (plasma total 25-hydroxy-vitamin D concentration <50 nmol/L) was observed in 75.6% of patients.
CONCLUSIONS: Vitamin D deficiency was common in this group of patients with heart failure. Based on self-reported dietary intake, a substantial number of individuals may not have been consuming enough vitamin D and a modest number of individuals may not have been consuming enough riboflavin, vitamin A, calcium, magnesium, potassium, zinc, copper, selenium, or iodine to meet their dietary needs.
Resumo:
Heterocyclic aromatic amines (HCA) are carcinogenic mutagens formed during cooking of protein-rich foods. HCA residues adducted to blood proteins have been postulated as biomarkers of HCA exposure. However, the viability of quantifying HCAs following hydrolytic release from adducts in vivo and correlation with dietary intake are unproven. To definitively assess the potential of labile HCA-protein adducts as biomarkers, a highly sensitive UPLC-MS/MS method was validated for four major HCAs: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) and 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx). Limits of detection were 1e5 pg/ml plasma and recoveries 91e115%. Efficacy of hydrolysis was demonstrated by HCA-protein adducts synthesised in vitro. Plasma and 7-day food diaries were collected from 122 fasting adults consuming their habitual diets. Estimated HCA intakes ranged from 0 to 2.5 mg/day. An extensive range of hydrolysis conditions was examined for release of adducted HCAs in plasma. HCA was detected in only one sample (PhIP, 9.7 pg/ml), demonstrating conclusively for the first time that acid-labile HCA adducts do not reflect dietary HCA intake and are present at such low concentrations that they are not feasible biomarkers of exposure. Identification of biomarkers remains important. The search should concentrate on stabilised HCA peptide markers and use of untargeted proteomic and metabolomic approaches.
Resumo:
The notion of educating the public through generic healthy eating messages has pervaded dietary health promotion efforts over the years and continues to do so through various media, despite little evidence for any enduring impact upon eating behaviour. There is growing evidence, however, that tailored interventions such as those that could be delivered online can be effective in bringing about healthy dietary behaviour change. The present paper brings together evidence from qualitative and quantitative studies that have considered the public perspective of genomics, nutrigenomics and personalised nutrition, including those conducted as part of the EU-funded Food4Me project. Such studies have consistently indicated that although the public hold positive views about nutrigenomics and personalised nutrition, they have reservations about the service providers' ability to ensure the secure handling of health data. Technological innovation has driven the concept of personalised nutrition forward and now a further technological leap is required to ensure the privacy of online service delivery systems and to protect data gathered in the process of designing personalised nutrition therapies.