181 resultados para prey choice
Resumo:
The influence of predation in structuring ecological communities can be informed by examining the shape and magnitude of the functional response of predators towards prey. We derived functional responses of the ubiquitous intertidal amphipod Echinogammarus marinus towards one of its preferred prey species, the isopod Jaera nordmanni. First, we examined the form of the functional response where prey were replaced following consumption, as compared to the usual experimental design where prey density in each replicate is allowed to deplete. E. marinus exhibited Type II functional responses, i.e. inversely density-dependent predation of J. nordmanni that increased linearly with prey availability at low densities, but decreased with further prey supply. In both prey replacement and non-replacement experiments, handling times and maximum feeding rates were similar. The non-replacement design underestimated attack rates compared to when prey were replaced. We then compared the use of Holling’s disc equation (assuming constant prey density) with the more appropriate Rogers’ random predator equation (accounting for prey depletion) using the prey non-replacement data. Rogers’ equation returned significantly greater attack rates but lower maximum feeding rates, indicating that model choice has significant implications for parameter estimates. We then manipulated habitat complexity and found significantly reduced predation by the amphipod in complex as opposed to simple habitat structure. Further, the functional response changed from a Type II in simple habitats to a sigmoidal, density-dependent Type III response in complex habitats, which may impart stability on the predator−prey interaction. Enhanced habitat complexity returned significantly lower attack rates, higher handling times and lower maximum feeding rates. These findings illustrate the sensitivity of the functional response to variations in prey supply, model selection and habitat complexity and, further, that E. marinus could potentially determine the local exclusion and persistence of prey through habitat-mediated changes in its predatory functional responses.
Resumo:
1. A more general contingency model of optimal diet choice is developed, allowing for simultaneous searching and handling, which extends the theory to include grazing and browsing by large herbivores.</p><p>2. Foraging resolves into three modes: purely encounter-limited, purely handling-limited and mixed-process, in which either a handling-limited prey type is added to an encounter-limited diet, or the diet becomes handling-limited as it expands.</p><p>3. The purely encounter-limited diet is, in general, broader than that predicted by the conventional contingency model,</p><p>4. As the degree of simultaneity of searching and handling increases, the optimal diet expands to the point where it is handling-limited, at which point all inferior prey types are rejected,</p><p>5. Inclusion of a less profitable prey species is not necessarily independent of its encounter rate and the zero-one rule does not necessarily hold: some of the less profitable prey may be included in the optimal diet. This gives an optimal foraging explanation for herbivores' mixed diets.</p><p>6. Rules are shown for calculating the boundary between encounter-limited and handling-limited diets and for predicting the proportion of inferior prey to be included in a two-species diet,</p><p>7. The digestive rate model is modified to include simultaneous searching and handling, showing that the more they overlap, the more the predicted diet-breadth is likely to be reduced.</p>
Resumo:
We develop a theory for the food intake of a predator that can switch between multiple prey species. The theory addresses empirical observations of prey switching and is based on the behavioural assumption that a predator tends to continue feeding on prey that are similar to the prey it has consumed last, in terms of, e.g., their morphology, defences, location, habitat choice, or behaviour. From a predator's dietary history and the assumed similarity relationship among prey species, we derive a general closed-form multi-species functional response for describing predators switching between multiple prey species. Our theory includes the Holling type II functional response as a special case and makes consistent predictions when populations of equivalent prey are aggregated or split. An analysis of the derived functional response enables us to highlight the following five main findings. (1) Prey switching leads to an approximate power-law relationship between ratios of prey abundance and prey intake, consistent with experimental data. (2) In agreement with empirical observations, the theory predicts an upper limit of 2 for the exponent of such power laws. (3) Our theory predicts deviations from power-law switching at very low and very high prey-abundance ratios. (4) The theory can predict the diet composition of a predator feeding on multiple prey species from diet observations for predators feeding only on pairs of prey species. (5) Predators foraging on more prey species will show less pronounced prey switching than predators foraging on fewer prey species, thus providing a natural explanation for the known difficulties of observing prey switching in the field. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Open source projects are networks of developers, distributors and end-users of non-proprietary created knowledge goods. It has been argued that this form of organization has some advantages over the firm or market coordination. I show that for sufficiently convex and modular projects proprietary licences are not able to sustain sequential knowledge production which, however, can be carried out if the project is run on the open source basis.
Exploring intrinsic and extrinsic motivational differences according to choice of physical activity.