16 resultados para poset of Hausdorff topologies
Resumo:
In this paper, the overall formation stability of unmanned multi-vehicle is mathematically presented under interconnection topologies. A novel definition of formation error is first given and followed by the proposed formation stability hypothesis. Based on this hypothesis, a unique extension-decomposition-aggregation scheme is then employed to support the stability analysis for the overall multi-vehicle formation under a mesh topology. It is proved that the overall formation control system consisting of N number of nonlinear vehicles is not only asymptotically, but also exponentially stable in the sense of Lyapunov within a neighbourhood of the desired formation. This technique is shown to be applicable for a mesh topology but is equally applicable for other topologies. Simulation study of the formation manoeuvre of multiple Aerosonde UAVs, in 3D-space, is finally carried out verifying the achieved formation stability result.
Resumo:
The multiplicative spectrum of a complex Banach space X is the class K(X) of all (automatically compact and Hausdorff) topological spaces appearing as spectra of Banach algebras (X,*) for all possible continuous multiplications on X turning X into a commutative associative complex algebra with the unity. The properties of the multiplicative spectrum are studied. In particular, we show that K(X^n) consists of countable compact spaces with at most n non-isolated points for any separable hereditarily indecomposable Banach space X. We prove that K(C[0,1]) coincides with the class of all metrizable compact spaces.
Resumo:
The impact of source/drain engineering on the performance of a six-transistor (6-T) static random access memory (SRAM) cell, based on 22 nm double-gate (DG) SOI MOSFETs, has been analyzed using mixed-mode simulation, for three different circuit topologies for low voltage operation. The trade-offs associated with the various conflicting requirements relating to read/write/standby operations have been evaluated comprehensively in terms of eight performance metrics, namely retention noise margin, static noise margin, static voltage/current noise margin, write-ability current, write trip voltage/current and leakage current. Optimal design parameters with gate-underlap architecture have been identified to enhance the overall SRAM performance, and the influence of parasitic source/drain resistance and supply voltage scaling has been investigated. A gate-underlap device designed with a spacer-to-straggle (s/sigma) ratio in the range 2-3 yields improved SRAM performance metrics, regardless of circuit topology. An optimal two word-line double-gate SOI 6-T SRAM cell design exhibits a high SNM similar to 162 mV, I-wr similar to 35 mu A and low I-leak similar to 70 pA at V-DD = 0.6 V, while maintaining SNM similar to 30% V-DD over the supply voltage (V-DD) range of 0.4-0.9 V.
Resumo:
The problem of topology control is to assign per-node transmission power such that the resulting topology is energy efficient and satisfies certain global properties such as connectivity. The conventional approach to achieve these objectives is based on the fundamental assumption that nodes are socially responsible. We examine the following question: if nodes behave in a selfish manner, how does it impact the overall connectivity and energy consumption in the resulting topologies? We pose the above problem as a noncooperative game and use game-theoretic analysis to address it. We study Nash equilibrium properties of the topology control game and evaluate the efficiency of the induced topology when nodes employ a greedy best response algorithm. We show that even when the nodes have complete information about the network, the steady-state topologies are suboptimal. We propose a modified algorithm based on a better response dynamic and show that this algorithm is guaranteed to converge to energy-efficient and connected topologies. Moreover, the node transmit power levels are more evenly distributed, and the network performance is comparable to that obtained from centralized algorithms.
Resumo:
Let X be a quasi-compact scheme, equipped with an open covering by affine schemes U s = Spec A s . A quasi-coherent sheaf on X gives rise, by taking sections over the U s , to a diagram of modules over the coordinate rings A s , indexed by the intersection poset S of the covering. If X is a regular toric scheme over an arbitrary commutative ring, we prove that the unbounded derived category of quasi-coherent sheaves on X can be obtained from a category of Sop-diagrams of chain complexes of modules by inverting maps which induce homology isomorphisms on hyper-derived inverse limits. Moreover, we show that there is a finite set of weak generators, one for each cone in the fan S. The approach taken uses the machinery of Bousfield–Hirschhorn colocalisation of model categories. The first step is to characterise colocal objects; these turn out to be homotopy sheaves in the sense that chain complexes over different open sets U s agree on intersections up to quasi-isomorphism. In a second step it is shown that the homotopy category of homotopy sheaves is equivalent to the derived category of X.
Resumo:
DNA telomeric repeats in mammalian cells are transcribed to guanine-rich RNA sequences, which adopt parallel-stranded G-quadruplexes with a propeller-like fold. The successful crystallization and structure analysis of a bimolecular human telomeric RNA G-quadruplex, folded into the same crystalline environment as an equivalent DNA oligonucleotide sequence, is reported here. The structural basis of the increased stability of RNA telomeric quadruplexes over DNA ones and their preference for parallel topologies is described here. Our findings suggest that the 2'-OH hydroxyl groups in the RNA quadruplex play a significant role in redefining hydration structure in the grooves and the hydrogen bonding networks. The preference for specific nucleotides to populate the C3'-endo sugar pucker domain is accommodated by alterations in the phosphate backbone, which leads to greater stability through enhanced hydrogen bonding networks. Molecular dynamics simulations on the DNA and RNA quadruplexes are consistent with these findings. The computations, based on the native crystal structure, provide an explanation for RNA G-quadruplex ligand binding selectivity for a group of naphthalene diimide ligands as compared to the DNA G-quadruplex.
Resumo:
In this paper, analysis and synthesis approach for two new variants within the Class-EF power amplifier (PA) family is elaborated. These amplifiers are classified here as Class-E3 F2 and transmission-line (TL) Class-E3 F 2. The proposed circuits offer means to alleviate some of the major issues faced by existing topologies such as substantial power losses due to the parasitic resistance of the large inductor in the Class-EF load network and deviation from ideal Class-EF operation due to the effect of device output inductance at high frequencies. Both lumped-element and transmission-line load networks for the Class-E 3 F PA are described. The load networks of the Class-E3 F and TL Class-E 3 F2amplifier topologies developed in this paper simultaneously satisfy the Class-EF optimum impedance requirements at fundamental frequency, second, and third harmonics as well as simultaneously providing matching to the circuit optimum load resistance for any prescribed system load resistance. Optimum circuit component values are analytically derived and validated by harmonic balance simulations. Trade-offs between circuit figures of merit and component values with some practical limitations being considered are discussed. © 2010 IEEE.
Resumo:
This focused review article discusses in detail, all available high-resolution small molecule ligand/G-quadruplex structural data derived from crystallographic and NMR based techniques, in an attempt to understand key factors in ligand binding and to highlight the biological importance of these complexes. In contrast to duplex DNA, G-quadruplexes are four-stranded nucleic acid structures folded from guanine rich repeat sequences stabilized by the stacking of guanine G-quartets and extensive Watson-Crick/Hoogsteen hydrogen bonding. Thermally stable, these topologies can play a role in telomere regulation and gene expression. The core structures of G-quadruplexes form stable scaffolds while the loops have been shown, by the addition of small molecule ligands, to be sufficiently adaptable to generate new and extended binding platforms for ligands to associate, either by extending G-quartet surfaces or by forming additional planar dinucleotide pairings. Many of these structurally characterised loop rearrangements were totally unexpected opening up new opportunities for the design of selective ligands. However these rearrangements do significantly complicate attempts to rationally design ligands against well defined but unbound topologies, as seen for the series of napthalene diimides complexes. Drawing together previous findings and with the introduction of two new crystallographic quadruplex/ligand structures we aim to expand the understanding of possible structural adaptations available to quadruplexes in the presence of ligands, thereby aiding in the design of new selective entities. (C) 2011 Elsevier Masson SAS. All rights reserved.
Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors
Resumo:
This study presents the use of periodic arrays of freestanding slot frequency-selective screens (FSS) as a means for generating circularly polarised signals from an incident linearly polarised signal at normal incidence to the structure. Measured and simulated results for crossed, linear and various ring slot element shapes in single and double-layer polarisation convertor structures are presented for 10 GHz operation. It is shown that 3 dB axial ratio (AR) bandwidths of 21% can be achieved with the one-layer perforated screen design and that the rate of change is lower than the double-layer structures. An insertion loss of 0.34 dB can be achieved for the split circular ring double-layer periodic array, and of the three topologies presented the hexagonal split-ring polarisation convertor gives the lowest variation of AR with angle of incidence 1.8 dB/45° and 3.6 dB/45° for the single and double-screen FSS, respectively. In addition, their tolerance to angle of incidence variation is presented. The capability of the surfaces reported here as twist polariser or spatial isolator components has been demonstrated with up to -30 dB isolation between incident and re-reflected signals for the double-layer designs being measured. © 2010 The Institution of Engineering and Technology.
Resumo:
Let T be a compact disjointness preserving linear operator from C0(X) into C0(Y), where X and Y are locally compact Hausdorff spaces. We show that T can be represented as a norm convergent countable sum of disjoint rank one operators. More precisely, T = Snd ?hn for a (possibly finite) sequence {xn }n of distinct points in X and a norm null sequence {hn }n of mutually disjoint functions in C0(Y). Moreover, we develop a graph theoretic method to describe the spectrum of such an operator
Resumo:
Sponge classification has long been based mainly on morphocladistic analyses but is now being greatly challenged by more than 12 years of accumulated analyses of molecular data analyses. The current study used phylogenetic hypotheses based on sequence data from 18S rRNA, 28S rRNA, and the CO1 barcoding fragment, combined with morphology to justify the resurrection of the order Axinellida Lévi, 1953. Axinellida occupies a key position in different morphologically derived topologies. The abandonment of Axinellida and the establishment of Halichondrida Vosmaer, 1887 sensu lato to contain Halichondriidae Gray, 1867, Axinellidae Carter, 1875, Bubaridae Topsent, 1894, Heteroxyidae Dendy, 1905, and a new family Dictyonellidae van Soest et al., 1990 was based on the conclusion that an axially condensed skeleton evolved independently in separate lineages in preference to the less parsimonious assumption that asters (star-shaped spicules), acanthostyles (club-shaped spicules with spines), and sigmata (C-shaped spicules) each evolved more than once. Our new molecular trees are congruent and contrast with the earlier, morphologically based, trees. The results show that axially condensed skeletons, asters, acanthostyles, and sigmata are all homoplasious characters. The unrecognized homoplasious nature of these characters explains much of the incongruence between molecular-based and morphology-based phylogenies. We use the molecular trees presented here as a basis for re-interpreting the morphological characters within Heteroscleromorpha. The implications for the classification of Heteroscleromorpha are discussed and a new order Biemnida ord. nov. is erected.
Resumo:
With the over-provisioned routing resource on FPGA, the topology choice for NoC implementation on FPGA is more flexible than on ASIC. However, it is well understood that the global wire routing impacts the performance of NoC on FPGA because the topology is routed by using fixed routing fabric. An important question that arises is: will the benefit of diameter reduction by using a highly connective topology outweigh the impact of global routing? To answer this question, we investigate FPGA based packet switched NoC implementations with different sizes and topologies, and quantitatively measure the impact of global routing to each of these networks. The result shows that with sufficient routing resources on modern FPGA, the global routing is not on the critical path of the system, and thus is not a dominating factor for the performance of practical multi-hop NoC system. © 2011 IEEE.
Resumo:
We study the entanglement distillability properties of thermal states of many-body systems Following the ideas presented in [6, A Ferraro et al., Phys. Rev Lett 100, 080502 (2008)], we first discuss the appearance of bound entanglement in those systems satisfying an entanglement area law Then, we extend these results to other topologies, not necessarily satisfying an entanglement area law We also study whether bound entanglement survives in the macroscopic limit of an infinite number of particles.
Resumo:
This paper employs a unique extension-decomposition-aggregation (EDA) scheme to solve the formation flight control problem for multiple unmanned aerial vehicles (UAVs). The corresponding decentralised longitudinal and lateral formation autopilots are novelly designed to maintain the overall formation stability when encountering changes of the formation error and topologies. The concept of propagation layer number (PLN) is also proposed to provide an intuitive criterion to judge which type of formation topology is more suitable to minimise formation error propagation (FEP). The criterion states that the smaller the PLN of the formation is, the quicker the response to the formation error is. A smaller PLN also means that the resulting topology provides better prevention to the FEP. Simulation studies of formation flight of multiple Aerosonde UAVs demonstrate that the designed formation controller based on the EDA strategy performs satisfactorily in maintaining the overall formation stable, and the bidirectional partial-mesh topology is found to provide the best overall response to the formation error propagation based on the PLN criterion.