111 resultados para noise filtering
Resumo:
Eight thousand images of the solar corona were captured during the June 2001 total solar eclipse. New software for the alignment of the images and an automated technique for detecting intensity oscillations using multi-scale wavelet analysis were developed. Large areas of the images covered by the Moon and the upper corona were scanned for oscillations and the statistical properties of the atmospheric effects were determined. The a Trous wavelet transform was used for noise reduction and Monte Carlo analysis as a significance test of the detections. The effectiveness of those techniques is discussed in detail.
Resumo:
It is noted that the determination of an oscillation frequency by used of the power spectrum of measured time series is susceptible to filtering of the signal. Similarly, frequency measurements made by period counting can yield different, results depending on how the signal is filtered for noise reduction. In an attempt to eliminate these ambiguities, a new measure of frequency, based on an approximate reconstruction of the phase-space trajectory of the oscillator from the signal, is introduced. This measure is shown to be invariant under linear filtering. For this reason, it is also inaccessible by spectral methods. The effect of filtering on frequency for weakly nonlinear, noisy oscillators, to which this definition applies only imperfectly, is quantified. This work provides the theoretical basis for frequency measurements employing MIRVA filtering.
Resumo:
A method for measuring the phase of oscillations from noisy time series is proposed. To obtain the phase, the signal is filtered in such a way that the filter output has minimal relative variation in the amplitude over all filters with complex-valued impulse response. The argument of the filter output yields the phase. Implementation of the algorithm and interpretation of the result are discussed. We argue that the phase obtained by the proposed method has a low susceptibility to measurement noise and a low rate of artificial phase slips. The method is applied for the detection and classification of mode locking in vortex flow meters. A measure for the strength of mode locking is proposed.
Resumo:
In this article, we focus on the analysis of competitive gene set methods for detecting the statistical significance of pathways from gene expression data. Our main result is to demonstrate that some of the most frequently used gene set methods, GSEA, GSEArot and GAGE, are severely influenced by the filtering of the data in a way that such an analysis is no longer reconcilable with the principles of statistical inference, rendering the obtained results in the worst case inexpressive. A possible consequence of this is that these methods can increase their power by the addition of unrelated data and noise. Our results are obtained within a bootstrapping framework that allows a rigorous assessment of the robustness of results and enables power estimates. Our results indicate that when using competitive gene set methods, it is imperative to apply a stringent gene filtering criterion. However, even when genes are filtered appropriately, for gene expression data from chips that do not provide a genome-scale coverage of the expression values of all mRNAs, this is not enough for GSEA, GSEArot and GAGE to ensure the statistical soundness of the applied procedure. For this reason, for biomedical and clinical studies, we strongly advice not to use GSEA, GSEArot and GAGE for such data sets.
Resumo:
Three experiments measured the effects of age on informational masking of speech by competing speech. The experiments were designed to minimize the energetic contributions of the competing speech so that informational masking could be measured with no large corrections for energetic masking. Experiment 1 used a "speech-in-speech-in-noise" design, in which the competing speech was presented in noise at a signal-to-noise ratio (SNR) of -4 dB. This ensured that the noise primarily contributed the energetic masking but the competing speech contributed the informational masking. Equal amounts of informational masking (3 dB) were observed for young and elderly listeners, although less was found for hearing-impaired listeners. Experiment 2 tested a range of SNRs in this design and showed that informational masking increased with SNR up to about an SNR of -4 dB, but decreased thereafter. Experiment 3 further reduced the energetic contribution of the competing speech by filtering it into different frequency bands from the target speech. The elderly listeners again showed approximately the same amount of informational masking (4-5 dB), although some elderly listeners had particular difficulty understanding these stimuli in any condition. On the whole, these results suggest that young and elderly listeners were equally susceptible to informational masking. © 2009 Acoustical Society of America.
Resumo:
Power dissipation and robustness to process variation have conflicting design requirements. Scaling of voltage is associated with larger variations, while Vdd upscaling or transistor upsizing for parametric-delay variation tolerance can be detrimental for power dissipation. However, for a class of signal-processing systems, effective tradeoff can be achieved between Vdd scaling, variation tolerance, and output quality. In this paper, we develop a novel low-power variation-tolerant algorithm/architecture for color interpolation that allows a graceful degradation in the peak-signal-to-noise ratio (PSNR) under aggressive voltage scaling as well as extreme process variations. This feature is achieved by exploiting the fact that all computations used in interpolating the pixel values do not equally contribute to PSNR improvement. In the presence of Vdd scaling and process variations, the architecture ensures that only the less important computations are affected by delay failures. We also propose a different sliding-window size than the conventional one to improve interpolation performance by a factor of two with negligible overhead. Simulation results show that, even at a scaled voltage of 77% of nominal value, our design provides reasonable image PSNR with 40% power savings. © 2006 IEEE.
Resumo:
Power dissipation and tolerance to process variations pose conflicting design requirements. Scaling of voltage is associated with larger variations, while Vdd upscaling or transistor up-sizing for process tolerance can be detrimental for power dissipation. However, for certain signal processing systems such as those used in color image processing, we noted that effective trade-offs can be achieved between Vdd scaling, process tolerance and "output quality". In this paper we demonstrate how these tradeoffs can be effectively utilized in the development of novel low-power variation tolerant architectures for color interpolation. The proposed architecture supports a graceful degradation in the PSNR (Peak Signal to Noise Ratio) under aggressive voltage scaling as well as extreme process variations in. sub-70nm technologies. This is achieved by exploiting the fact that some computations are more important and contribute more to the PSNR improvement compared to the others. The computations are mapped to the hardware in such a way that only the less important computations are affected by Vdd-scaling and process variations. Simulation results show that even at a scaled voltage of 60% of nominal Vdd value, our design provides reasonable image PSNR with 69% power savings.
Combining multi-band and frequency-filtering techniques for speech recognition in noisy environments
Resumo:
While current speech recognisers give acceptable performance in carefully controlled environments, their performance degrades rapidly when they are applied in more realistic situations. Generally, the environmental noise may be classified into two classes: the wide-band noise and narrow band noise. While the multi-band model has been shown to be capable of dealing with speech corrupted by narrow-band noise, it is ineffective for wide-band noise. In this paper, we suggest a combination of the frequency-filtering technique with the probabilistic union model in the multi-band approach. The new system has been tested on the TIDIGITS database, corrupted by white noise, noise collected from a railway station, and narrow-band noise, respectively. The results have shown that this approach is capable of dealing with noise of narrow-band or wide-band characteristics, assuming no knowledge about the noisy environment.
Correlation of simulated and measured noise emissions using a combined 1D/3D computational technique