24 resultados para matrix-located processing peptidase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel application-specific instruction set processor (ASIP) for use in the construction of modern signal processing systems is presented. This is a flexible device that can be used in the construction of array processor systems for the real-time implementation of functions such as singular-value decomposition (SVD) and QR decomposition (QRD), as well as other important matrix computations. It uses a coordinate rotation digital computer (CORDIC) module to perform arithmetic operations and several approaches are adopted to achieve high performance including pipelining of the micro-rotations, the use of parallel instructions and a dual-bus architecture. In addition, a novel method for scale factor correction is presented which only needs to be applied once at the end of the computation. This also reduces computation time and enhances performance. Methods are described which allow this processor to be used in reduced dimension (i.e., folded) array processor structures that allow tradeoffs between hardware and performance. The net result is a flexible matrix computational processing element (PE) whose functionality can be changed under program control for use in a wider range of scenarios than previous work. Details are presented of the results of a design study, which considers the application of this decomposition PE architecture in a combined SVD/QRD system and demonstrates that a combination of high performance and efficient silicon implementation are achievable. © 2005 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Matrix algorithms are important in many types of applications including image and signal processing. A close examination of the algorithms used in these, and related, applications reveals that many of the fundamental actions involve matrix algorithms such as matrix multiplication. This paper presents an investigation into the design and implementation of different matrix algorithms such as matrix operations, matrix transforms and matrix decompositions using a novel custom coprocessor system for MATrix algorithms based on Reconfigurable Computing (RCMAT). The proposed RCMAT architectures are scalable, modular and require less area and time complexity with reduced latency when compared with existing structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An H-file is used to convey information from the inner-region to the outer-region in R-matrix computations. HBrowse is a workstation tool for displaying a graphical abstraction of a local or remote R-matrix H-file. While it is published as a stand-alone tool for post-processing the output from R-matrix inner-region computations it also forms part of the Graphical R-matrix Atomic Collision Environment (GRACE), HBrowse is written in C and OSF/Motif for the UNIX operating system. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a matrix inversion architecture based on the novel Modified Squared Givens Rotations (MSGR) algorithm, which extends the original SGR method to complex valued data, and also corrects erroneous results in the original SGR method when zeros occur on the diagonal of the matrix either initially or during processing. The MSGR algorithm also avoids complex dividers in the matrix inversion, thus minimising the complexity of potential real-time implementations. A systolic array architecture is implemented and FPGA synthesis results indicate a high-throughput low-latency complex matrix inversion solution. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a novel linear transmit precoding strategy for multiple-input, multiple-output (MIMO) systems employing improper signal constellations. In particular, improved zero-forcing (ZF) and minimum mean square error (MMSE) precoders are derived based on modified cost functions, and are shown to achieve a superior performance without loss of spectrum efficiency compared to the conventional linear and nonlinear precoders. The superiority of the proposed precoders over the conventional solutions are verified by both simulation and analytical results. The novel approach to precoding design is also applied to the case of an imperfect channel estimate with a known error covariance as well as to the multi-user scenario where precoding based on the nullspace of channel transmission matrix is employed to decouple multi-user channels. In both cases, the improved precoding schemes yield significant performance gain compared to the conventional counterparts.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Keloid scars are common benign fibroproliferative reticular dermal lesions with unknown etiology and ill-defined management with high rate of recurrence post surgery. The progression of keloids is characterized by increased deposition of extracellular matrix proteins, invasion into the surrounding healthy skin and inflammation. Fibroblasts are considered to be the key cellular mediators of fibrogenesis in keloid scars. Fibroblast activation protein alpha (FAP-a) and dipeptidyl peptidase IV (DPPIV) are proteases located at the plasma membrane promoting cell invasiveness and tumor growth and have been previously associated with keloid scars. Therefore, in this study we analyzed in further detail the expression of FAP-a in keloid fibroblasts compared to control skin fibroblasts. Dermal fibroblasts were obtained from punch-biopsies from the active margin of four keloids and four control skin samples. Flow cytometry was used to analyze FAP-a expression and the CytoSelect(®) 24-Well Collagen I Cell Invasion Assay was applied to study fibroblast invasion. Secretion of extracellular matrix (ECM) proteins was investigated by multiplexed particle-based flow cytometric assay and enzyme-linked immunosorbent assay. We found an increased expression of FAP-a in keloid fibroblasts compared to control skin fibroblasts (p

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real-time matrix inversion is a key enabling technology in multiple-input multiple-output (MIMO) communications systems, such as 802.11n. To date, however, no matrix inversion implementation has been devised which supports real-time operation for these standards. In this paper, we overcome this barrier by presenting a novel matrix inversion algorithm which is ideally suited to high performance floating-point implementation. We show how the resulting architecture offers fundamentally higher performance than currently published matrix inversion approaches and we use it to create the first reported architecture capable of supporting real-time 802.11n operation. Specifically, we present a matrix inversion approach based on modified squared Givens rotations (MSGR). This is a new QR decomposition algorithm which overcomes critical limitations in other QR algorithms that prohibits their application to MIMO systems. In addition, we present a novel modification that further reduces the complexity of MSGR by almost 20%. This enables real-time implementation with negligible reduction in the accuracy of the inversion operation, or the BER of a MIMO receiver based on this.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opisthorchis viverrini is an important helminth pathogen of humans that is endemic in Thailand and Laos. Adult flukes reside within host bile ducts and feed on epithelial tissue and blood cells. Chronic opisthorchiasis is associated with severe hepatobiliary diseases such as cholangiocarcinoma. Here we report that adult O. viverrini secrete two major cysteine proteases: cathepsin F (Ov-CF-1) and cathepsin B1 (Ov-CB-1). Ov-CF-1 is secreted as an inactive zymogen that autocatalytically processes and activates to a mature enzyme at pH 4.5 via an intermolecular cleavage at the prosegment-mature domain junction. Ov-CB-1 is also secreted as a zymogen but, in contrast to Ov-CF-1, is fully active against peptide and macromolecular substrates despite retaining the N-terminal prosegment. The active Ov-CB-1 zymogen was capable of trans-activating Ov-CF-1 by proteolytic removal of its prosegment at pH 5.5, a pH at which the Ov-CF-1 zymogen cannot autocatalytically activate. Both cathepsins hydrolyse human haemoglobin but their combined action more efficiently degrades haemoglobin to smaller peptides than each enzyme alone. Ov-CF-1 degraded extracellular matrix proteins more effectively than Ov-CB-1 at physiological pH. We propose that Ov-CB-1 regulates Ov-CF-1 activity and that both enzymes work together to degrade host tissue contributing to the development of liver fluke-associated cholangiocarcinoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work is focused on the demonstration of the advantages of miniaturized reactor systems which are essential for processes where potential for considerable heat transfer intensification exists as well as for kinetic studies of highly exothermic reactions at near-isothermal conditions. The heat transfer characteristics of four different cross-flow designs of a microstructured reactor/heat-exchanger (MRHE) were studied by CFD simulation using ammonia oxidation on a platinum catalyst as a model reaction. An appropriate distribution of the nitrogen flow used as a coolant can decrease drastically the axial temperature gradient in the reaction channels. In case of a microreactor made of a highly conductive material, the temperature non-uniformity in the reactor is strongly dependent on the distance between the reaction and cooling channels. Appropriate design of a single periodic reactor/heat-exchanger unit, combined with a non-uniform inlet coolant distribution, reduces the temperature gradients in the complete reactor to less than 4degreesC, even at conditions corresponding to an adiabatic temperature rise of about 1400degreesC, which are generally not accessible in conventional reactors because of the danger of runaway reactions. To obtain the required coolant flow distribution, an optimization study was performed to acquire the particular geometry of the inlet and outlet chambers in the microreactor/heat-exchanger. The predicted temperature profiles are in good agreement with experimental data from temperature sensors located along the reactant and coolant flows. The results demonstrate the clear potential of microstructured devices as reliable instruments for kinetic research as well as for proper heat management in the case of highly exothermic reactions. (C) 2002 Elsevier Science B.V. All rights reserved.