90 resultados para kinetic resolution of activated cyclopropanes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piano stool complexes of rhodium and iridium activated by fluorinated and non-fluorinated N-heterocyclic carbene (NHC) ligands were shown to be catalysts for racemization in the one-pot chemoenzymic dynamic kinetic resolution (DKR) of secondary alcohols. Excellent conversions and good enantioselectivities were observed for alkyl aryl and dialkyl secondary alcohols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetic resolution of racemic sulfoxides by dimethyl sulfoxide (DMSO) reductases was investigated with a range of microorganisms. Three bacterial isolates (provisionally identified as Citrobacter braakii, Klebsiella sp. and Serratia sp.) expressing DMSO reductase activity were isolated from environmental samples by anaerobic enrichment with DMSO as terminal electron acceptor. The organisms reduced a diverse range of racemic sulfoxides to yield either residual enantiomer depending upon the strain used. C. braakii DMSO-11 exhibited wide substrate specificity that included dialkyl, diaryl and alkylaryl sulfoxides, and was unique in its ability to reduce the thiosulfinate 1,4-dihydrobenzo-2, 3-dithian-2-oxide. DMSO reductase was purified from the periplasmic fraction of C. braakii DMSO-11 and was used to demonstrate unequivocally that the DMSO reductase was responsible for enantiospecific reductive resolution of racemic sulfoxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protease-activated receptors [PARs] are a family of G-protein-coupled seven-transmembrane domain receptors that are activated by proteolytic cleavage of their amino-terminal exodomain. To characterize the cleavage rate of human PAR-1 / 2 / 3 and 4 by trypsin and thrombin, four synthetic quenched-fluorescent peptide substrates have been synthesized. Each substrate consisted of a ten-residue peptide spanning the receptor activation cleavage site and using progress-curve kinetics, k(cat)/K-m values were determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of dye molecular charges on their adsorption from solution was investigated by using different types of activated carbon adsorbents. Two types of model systems were used representing cationic and anionic dyes. Screening investigations using single point tests were used throughout the study. Cationic dyes, of which Methylene Blue is an example, showed a higher adsorption tendency towards activated carbon over anionic dyes represented by an ate-type reactive compound. Of the number of activated carbons tested, only one of the adsorbents showed an exception to this behavior, and a good relation was observed between Methylene Blue capacity and activated carbon performance. The high capacity of cationic dyes in comparison to anionic dyes was also evident in the results obtained by a preliminary kinetic study carried out on the selected systems. Surface net charge of activated carbon and the nature of attractions between the molecules were suggested to be one of the reasons attributed for this behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monolithic catalysts are widely used as structured catalysts, especially in the abatement of pollutants. Probing what happens inside these monoliths during operation is, therefore, vital for modelling and prediction of the catalyst behavior. SpaciMS is a spatially resolved capillary-inlet mass spectroscopy system allowing for the generation of spatially resolved maps of the reactions within monoliths. In this study SpaciMS results combined with 3D CFD modelling demonstrate that SpaciMS is a highly sensitive and minimally invasive technique that can provide reaction maps as well as catalytic temporal behavior. Herein we illustrate this by examining kinetic oscillations during a CO oxidation reaction over a Pt/Rh on alumina catalyst supported on a cordierite monolith. These oscillations were only observed within the monolith by SpaciMS between 30 and 90% CO conversion. Equivalent experiments performed in a plug-flow reactor using this catalyst in a crushed form over a similar range of reaction conditions did not display any oscillations demonstrating the importance of intra monolith analysis. This work demonstrates that the SpaciMS offers an accurate and comprehensive picture of structured catalysts under operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemoenzymatic dynamic kinetic resolution (DKR) of rac-1-phenyl ethanol into R-1-phenylethanol acetate was investigated with emphasis on the minimization of side reactions. The organometallic hydrogen transfer (racemization) catalyst was varied, and this was observed to alter the rate and extent of oxidation of the alcohol to form ketone side products. The performance of highly active catalyst [(pentamethylcyclopentadienyl) IrCl2(1-benzyl,3-methyl-imidazol-2-ylidene)] was found to depend on the batch of lipase B used. The interaction between the bio- and chemo-catalysts was reduced by employing physical entrapment of the enzyme in silica using a sol-gel process. The nature of the gelation method was found to be important, with an alkaline method preferred, as an acidic method was found to initiate a further side reaction, the acid catalyzed dehydration of the secondary alcohol. The acidic gel was found to be a heterogeneous solid acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The H-2-assisted hydrocarbon selective catalytic reduction (HC-SCR) of NO, was investigated using fast transient kinetic analysis coupled with isotopically labelled (NO)-N-15. This allowed monitoring of the evolution of products and reactants during switches of H-2 in and out of the SCR reaction mix. The results obtained with a time resolution of less than 1 s showed that the effect on the reaction of the removal or addition of H-2 was essentially instantaneous. This is consistent with the view that H-2 has a direct chemical effect on the reaction mechanism rather than a secondary one through the formation of "active" Ag clusters. The effect of H-2 partial pressure was investigated at 245 degrees C, it was found that increasing partial pressure of H-2 resulted in increasing conversion of NO and octane. It was also found that the addition of H-2 at 245 degrees C had different effects on the product distribution depending on its partial pressure. The change of the nitrogen balance over time during switches in and out of hydrogen showed that significant quantities of N-containing species were stored when hydrogen was introduced to the system. The positive nitrogen balance on removal of H-2 from the gas phase showed that these stored species continued to react after removal of hydrogen to form N-2. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Taguchi method was applied to investigate the optimal operating conditions in the preparation of activated carbon using palm kernel shell with quadruple control factors: irradiation time, microwave power, concentration of phosphoric acid as impregnation substance and impregnation ratio between acid and palm kernel shell. The best combination of the control factors as obtained by applying Taguchi method was microwave power of 800 W, irradiation time of 17 min, impregnation ratio of 2, and acid concentration of 85%. The noise factor (particle size of raw material) was considered in a separate outer array, which had no effect on the quality of the activated carbon as confirmed by t-test. Activated carbon prepared at optimum combination of control factors had high BET surface area of 1,473.55 m² g-1 and high porosity. The adsorption equilibrium and kinetic data can satisfactorily be described by the Langmuir isotherm and a pseudo-second-order kinetic model, respectively. The maximum adsorbing capacity suggested by the Langmuir model was 1000 mg g-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This manuscript describes the application and further development of the TAP technique in kinetic characterization of heterogeneous catalysis. The major application of TAP systems is to study mechanisms, kinetics and transport phenomena in heterogeneous catalysis, all of which is made possible by the sub-millisecond time resolution. Furthermore, the kinetic information obtained can be used to gain an insight into the mechanism occurring over the catalyst system. This is advantageous as heterogeneous catalysts with an improved efficiency can be developed as a result. TAP kinetic studies are carried out at low pressure (~1x10-7 mbar) and TAP pulses are sufficiently small (1013-1015 molecules) so as to maintain this low pressure. The use of a small number of molecules in comparison to the total number of active sites means the state of the catalyst remains relatively unchanged. The use of the low intensity pulses also makes the pressure gradient negligible and so allows the TAP reactor system to operate in the Knudsen Diffusion regime, where gas-gas reactions are eliminated. Hence only gas-catalyst reactions are investigated and, by the use of moment analysis of observed exit flow, rate constants of elementary steps of the reaction can be obtained.

In this manuscript, two attempts to further the TAP technique are reported. Firstly, the work undertaken at QUB to attempt to control the number of molecules of condensable reagents that can be pulsed during a TAP pulse experiment is disclosed. Secondly, a collaborative project with SAI Ltd Manchester is discussed in a separate chapter, where technical details and validation of a customised time of flight mass spectrometer (ToF MS) for the QUB TAP-1 system are reported. A collaborative project with Cardiff Catalysis Institute focusing on the study of CO oxidation over hopcalite catalysts is also reported. The analysis of the experimental results has provided an insight into the possible mechanism of the oxidation of CO over these catalysts. A correction function has also been derived which accounts for the adsorption of reactant molecules over inert materials that are used for the reactor packing in TAP experiments. This function was then applied to the selective reduction of O2 in a H2 rich ethene feed, so that more accurate TAP moment based analysis could be conducted.