46 resultados para dark-germination.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Components of partial disease resistance (PDR) to fusarium head blight (FHB), detected in a seed-germination assay, were compared with whole-plant FHB resistance of 30 USA soft red winter wheat entries in the 2002 Uniform Southern FHB Nursery. Highly significant (P <0·001) differences between cultivars in the in vitro seed-germination assay inoculated with Microdochium majus were correlated to FHB disease incidence (r = -0·41; P <0·05), severity (r = -0·47; P <0·01), FHB index (r = -0·46; P <0·01), damaged kernels (r = -0·52; P <0·01), grain deoxynivalenol (DON) concentration (r = -0·40; P <0·05) and incidence/severity/kernel-damage index (ISK) (r = -0·45; P <0·01) caused by Fusarium graminearum. Multiple linear regression analysis explained a greater percentage of variation in FHB resistance using the seed-germination assay and the previously reported detached-leaf assay PDR components as explanatory factors. Shorter incubation periods, longer latent periods, shorter lesion lengths in the detached-leaf assay and higher germination rates in the seed-germination assay were related to greater FHB resistance across all disease variables, collectively explaining 62% of variation for incidence, 49% for severity, 56% for F. graminearum-damaged kernels (FDK), 39% for DON and 59% for ISK index. Incubation period was most strongly related to disease incidence and the early stages of infection, while resistance detected in the seed germination assay and latent period were more strongly related to FHB disease severity. Resistance detected using the seed-germination assay was notable as it related to greater decline in the level of FDK and a smaller reduction in DON than would have been expected from the reduction in FHB disease assessed by visual symptoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements on the dissociative recombination (DR) of protonated acrylonitrile, CH2CHCNH+, have been performed at the heavy ion storage ring CRYRING located in the Manne Siegbahn Laboratory in Stockholm, Sweden. It has been found that at~2meV relative kinetic energy about 50% of the DR events involve only ruptures of X–H bonds (where X=C or N)while the rest leads to the production of a pair of fragments each containing two heavy atoms (alongside H and/or H2). The absolute DR cross section has been investigated for relative kinetic energies ranging from ~1 meV to 1 eV. The thermal rate coefficient has been determined to follow the expression k(T) = 1.78 × 10-6 (T/300)-0.80 cm3 s-1 for electron temperatures ranging from ~10 to 1000 K. Gas-phase models of the nitrile chemistry in the dark molecular cloud TMC-1 have been run and results are compared with observations. Also, implications of the present results for the nitrile chemistry of Titan’s upper atmosphere are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the role of molecular anion chemistry in pseudo-time-dependent chemical models of dark clouds. With oxygen-rich elemental abundances, the addition of anions results in a slight improvement in the overall agreement between model results and observations of molecular abundances in Taurus molecular cloud 1 (TMC-1 (CP)). More importantly, with the inclusion of anions, we see an enhanced production efficiency of unsaturated carbon-chain neutral molecules, especially in the longer members of the families C(n)H, C(n)H(2), and HC(n)N. The use of carbon-rich elemental abundances in models of TMC-1 (CP) with anion chemistry worsens the agreement with observations compared with model results obtained in the absence of anions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the results of models of dark cloud chemistry incorporating a depth dependent density distribution with diffusive mixing and adsorption onto grains. The model is based on the approach taken by Xie et al. (1995), with the addition of grain accretion effects. Without diffusion, the central regions of the cloud freeze out in less than 10(7) years. Freeze-out time is dependent on density, so the diffuse outer region of the cloud remains abundant in gas for about an order of magnitude longer. We find that fairly small amounts of diffusive mixing can delay freeze-out at the centre of the model cloud for a time up to an order of magnitude greater than without diffusion, due to material diffusing inward from the edges of the cloud. The gas-phase lifetime of the cloud core can thus be increased by up to an order of magnitude or more by this process. We have run three different grain models with various diffusion coefficients to investigate the effects of changing the sticking parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The travel experience filled with personal trauma; the pilgrimage through a war-torn place; the journey with those suffering: these represent the darker sides of travel. What is their allure and how are they represented? This volume takes an ethnographic and interdisciplinary approach to explore the writings and texts of dark journeys and travels. In traveling over the dead, amongst the dying, and alongside the suffering, the authors give us a tour of humanity’s violence and misery. And yet, from this dark side, there comes great beauty and poignancy in the characterization of plight; creativity in the comic, graphic, and graffiti sketches and comments on life; and the sense of profound and spiritual journeys being undertaken, recorded, and memorialized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effects of varying the cosmic ray ionization rate in chemical models of dense interstellar clouds. In the absence of such ionization, a scenario which may be applicable to dark cloud cores, we find that chemi-ionization is able to drive a limited ion-neutral chemistry. Models of clouds in starburst galaxies, which may have enhanced cosmic ray fluxes, are also investigated and enable an upper limit to be derived for the cosmic ray ionization rate in M82. The derived value, which is about 700 times the typical value for Galactic molecular clouds, is in good agreement with that necessary to explain the recent observations of C I in this galaxy.