43 resultados para Van-Der-Waals
Resumo:
The random-phase approximation with exchange (RPAE) is used with a B-spline basis to compute dynamic dipole polarizabilities of noble-gas atoms and several other closed-shell atoms (Be, Mg, Ca, Zn, Sr, Cd, and Ba). From these, values of the van der Waals C6 constants for positronium interactions with these atoms are determined and compared with existing data. After correcting the RPAE polarizabilities to fit the most accurate static polarizability data, our best predictions of C6 for Ps–noble-gas pairs are expected to be accurate to within 1%, and to within a few percent for the alkaline-earth metals. We also used accurate dynamic dipole polarizabilities from the literature to compute the C6 coefficients for the alkali-metal atoms. Implications of increased C6 values for Ps scattering from more polarizable atoms are discussed.
Resumo:
Epitaxial van der Waals (vdW) heterostructures of organic and layered materials are demonstrated to create high-performance organic electronic devices. High-quality rubrene films with large single-crystalline domains are grown on h-BN dielectric layers via vdW epitaxy. In addition, high carrier mobility comparable to free-standing single-crystal counterparts is achieved by forming interfacial electrical contacts with graphene electrodes.
Resumo:
: Static calculation and preliminary kinetic Monte Carlo simulation studies are undertaken for the nucleation and growth on a model system which follows a Frank-van der Merwe mechanism. In the present case, we consider the deposition of Ag on Au(100) and Au(111) surfaces. The interactions were calculated using the embedded atom model. The kinetics of formation and growth of 2D Ag structures on Au(100) and Au(111) is investigated and the influence of surface steps on this phenomenon is studied. Very different time scales are predicted for Ag diffusion on Au(100) and Au(111), thus rendering very different regimes for the nucleation and growth of the related 2D phases. These observations are drawn from the application of a model free of any adjustable parameter.
Resumo:
The chaotic profile of dust grain dynamics associated with dust-acoustic oscillations in a dusty plasma is considered. The collective behaviour of the dust plasma component is described via a multi-fluid model, comprising Boltzmann distributed electrons and ions, as well as an equation of continuity possessing a source term for the dust grains, the dust momentum and Poisson's equations. A Van der Pol–Mathieu-type nonlinear ordinary differential equation for the dust grain density dynamics is derived. The dynamical system is cast into an autonomous form by employing an averaging method. Critical stability boundaries for a particular trivial solution of the governing equation with varying parameters are specified. The equation is analysed to determine the resonance region, and finally numerically solved by using a fourth-order Runge–Kutta method. The presence of chaotic limit cycles is pointed out.
Resumo:
Ever sceptical about the positivistic claims of ethnographic and so-called realist documentary, Johan van der Keuken’s film-making is the work of a curious, spontaneous and disorientated observer of the essential strangeness of both the foreign and the familiar, new landscapes and cities, experiences, and people. While there are various explicitly political and socially orientated films and themes across his work, it is those films and moments when what is being conveyed is a sense of him being somewhere liminal, being ‘in-between’ situations, cultures, styles and interpretations, reticent, uncertain but incorrigibly curious that constitute his most valuable contribution to documentary film aesthetics. Not surprisingly, such characteristics often come to the fore in those films where he tries to make sense of loss, the passing of lives and the legacies left behind. This article discusses questions of history and personal loss in a number of his films.
Resumo:
Calculations are reported for positronium (Ps) scattering by atomic hydrogen (H) in the energy range 0-6.5 eV in a coupled- pseudostate approximation in which excitation and ionization channels of both the Ps and the H are taken into account. The approximation contains an accurate representation of the van der Waals coefficient. Results are presented for phase shifts, scattering lengths, effective ranges, and various cross sections including partial wave, total, and ortho-para conversion cross sections. An analysis of the possible spin transitions is provided and the energy of the positronium hydride (PsH) bound state is determined. Substantial differences are found from earlier work within the frozen target approximation, now clearly confirming the importance of target excitation channels. Good agreement is obtained with recent calculations of S-wave phase shifts and scattering lengths using the stabilization method. Convergence to the exact binding energy for PsH appears to be slow. Resonances corresponding to unstable states of the positron orbiting H- are seen in the electronic spin singlet partial waves. The importance of the H- formation channel is discussed.
Resumo:
The accuracy and reliability of popular density functional approximations for the compounds giving origin to room temperature ionic liquids have been assessed by computing the T=0 K crystal structure of several 1-alkyl-3-methyl-imidazolium salts. Two prototypical exchange-correlation approximations have been considered, i.e., the local density approximation (LDA) and one gradient corrected scheme [PBE-GGA, Phys. Rev. Lett. 77, 3865 (1996)]. Comparison with low-temperature x-ray diffraction data shows that the equilibrium volume predicted by either approximations is affected by large errors, nearly equal in magnitude (~10%), and of opposite sign. In both cases the error can be traced to a poor description of the intermolecular interactions, while the intramolecular structure is fairly well reproduced by LDA and PBE-GGA. The PBE-GGA optimization of atomic positions within the experimental unit cell provides results in good agreement with the x-ray structure. The correct system volume can also be restored by supplementing PBE-GGA with empirical dispersion terms reproducing the r-6 attractive tail of the van der Waals interactions.
Resumo:
We present a semiclassical complex angular momentum (CAM) analysis of the forward scattering peak which occurs at a translational collision energy around 32 meV in the quantum mechanical calculations for the F + H2(v = 0, j = 0) ? HF(v' = 2, j' = 0) + H reaction on the Stark–Werner potential energy surface. The semiclassical CAM theory is modified to cover the forward and backward scattering angles. The peak is shown to result from constructive/destructive interference of the two Regge states associated with two resonances, one in the transition state region and the other in the exit channel van der Waals well. In addition, we demonstrate that the oscillations in the energy dependence of the backward differential cross section are caused by the interference between the direct backward scattering and the decay of the two resonance complexes returning to the backward direction after one full rotation.
Resumo:
Simulations of beta-glucose in the ionic liquid 1,3-dimethylimidazoliurn chloride have been performed in order to examine the solvation environment of the carbohydrate. Both single molecule and 1:5 glucose:ionic liquid (16.7 wt %) solutions are Studied, and the hydrogen bonding between sugar and solvent is examined. The primary solvation shell around the perimeter of the glucose ring consists predominantly of chloride anions which hydrogen bond to the hydroxyl groups. A small presence of the cation is also found, with the association Occurring through the weakly acidic hydrogen at the 2-position of the imidazolium ring interacting with the oxygen atoms of the sugar secondary hydroxyls. An average chloride coordination number of 4 is found around the glucose for both the single molecule and high concentration Simulations, despite the reduced chloride:glucose ratio in the latter case. In relation to the cation, the glucose molecules occupy positions above and below the plane of the imidazolium ring. Importantly, even at high glucose concentrations, no significant change in the anion-cation interactions and overall liquid structure of the ionic liquid is found, indicating that the glucose is readily accommodated by the solvent at this concentration. Dominant contributions to the sugar-ionic liquid interaction energy come from favorable hydrogen bonding (electrostatic) interactions between hydroxyls and chlorides, although a small favorable van der Waals energy contribution is also seen between the sugar and cations suggesting that the cation could be tailored in order to further improve the dissolution of glucose/cellulose in ionic liquid systems.
Resumo:
We studied the alpha-olefin selectivity in Fischer-Tropsch (FT) synthesis using density functional theory (131717) calculations. We calculated the relevant elementary steps from C-2 to C-6 species. Our results showed that the barriers of hydrogenation and dehydrogenation reactions were constant with different chain lengths, and the chemisorption energies of alpha-olefins from DFT calculations also were very similar, except for C-2 species. A simple expression of the paraffin/olefin ratio was obtained based on a kinetic model. Combining the expression of the paraffin/olefin ratio and our calculation results, experimental findings are satisfactorily explained. We found that the physical origin of the chain length dependence of paraffin/olefin ratio is the chain length dependence of both the van der Waals interaction between adsorbed alpha-olefins and metal surfaces and the entropy difference between adsorbed and gaseous alpha-olefins, and that the greater chemisorption energy of ethylene is the main reason for the abnormal ethane/ethylene ratio. (c) 2008 Elsevier Inc. All rights reserved.