20 resultados para Numerical slope stability


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Antrim Coast Road stretching from the seaport of Larne in the East of Northern Ireland to the famous Giant’s Causeway in the North has a well-deserved reputation for being one of the most spectacular roads in Europe (Day, 2006). At various locations along the route, fluid interactions between the problematic geology, Jurassic Lias Clay and Triassic Mudstone overlain by Cretaceous Limestone and Tertiary Basalt, and environmental variables result in frequent instances of slope instability within the vadose zone. During such instances of instability, debris flows and composite mudflows encroach on the carriageway posing a hazard to road users. This paper examines the site investigative, geotechnical and spatial analysis techniques currently being implemented to monitor slope stability for one site at Straidkilly Point, Glenarm, Northern Ireland. An in-depth understanding of the geology was obtained via boreholes, resistivity surveys and laboratory testing. Environmental variables recorded by an on-site weather station were correlated with measured pore water pressure and soil moisture infiltration dynamic data.
Terrestrial LiDAR (TLS) was applied to the slope for the monitoring of failures, with surveys carried out on a bi-monthly basis. TLS monitoring allowed for the generation of Digital Elevation Models (DEMs) of difference, highlighting areas of recent movement, erosion and deposition. Morphology parameters were generated from the DEMs and include slope, curvature and multiple measures of roughness. Changes in the structure of the slope coupled with morphological parameters are characterised and linked to progressive failures from the temporal monitoring. In addition to TLS monitoring, Aerial LiDARi datasets were used for the spatio-morphological characterisation of the slope on a macro scale. Results from the geotechnical and environmental monitoring were compared with spatial data obtained through Terrestrial and Airborne LiDAR, providing a multi-faceted approach to slope stability characterization, which facilitates more informed management of geotechnical risk by the Northern Ireland Roads Service.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Landslides and debris flows, commonly triggered by rainfall, pose a geotechnical risk causing disruption to transport routes and incur significant financial expenditure. With infrastructure maintenance budgets becoming ever more constrained, this paper provides an overview of some of the developing methods being implemented by Queen’s University, Belfast in collaboration with the Department for Regional Development to monitor the stability of two distinctly different infrastructure slopes in Northern Ireland. In addition to the traditional, intrusive ground investigative and laboratory testing methods, aerial LiDAR, terrestrial LiDAR, geophysical techniques and differential Global Positioning Systems have been used to monitor slope stability. Finally, a comparison between terrestrial LiDAR, pore water pressure and soil moisture deficit (SMD) is presented to outline the processes for a more informed management regime and to highlight the season relationship between landslide activity and the aforementioned parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of small-scale tests was undertaken to verify if granular anchors could be used as a slope stabilisation technique. The nature of the material used and the resulting loading configuration are described here. The work confirms that the inclusion of anchors within a slope mass, irrespective of their number or orientation, significantly enhances the capacity and ductility of the failure mode. The small-scale nature of this research did influence the observed capacities, but the overarching hypothesis was confirmed. A simple analysis method is proposed that allows designers to accurately remediate natural or man-made slopes using existing analytical methods for slope stability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Slope instabilities – commonly triggered by rainfall – pose a geotechnical risk causing disruption to transport routes and incur significant financial resources. This article details laboratory, ground and remote sensing investigations carried out by Queen’s University Belfast and Transport Northern Ireland (TNI) to characterise and monitor slope instability on two higher risk infrastructure slopes in Northern Ireland. The research is used to update a noninvasive risk assessment model of slopes across the country’s road network to direct resources for future investigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The interaction between problematic geology and environmental variables along the Antrim Coast Road results in frequent instances of geotechnical instability. During such instances of instability, mudslide debris encroaches on the carriageway posing a hazard to motorists, causing lengthily tailbacks. This paper examines some of the geotechnical and spatial analysis techniques currently being implemented to monitor slope stability on this key transport route.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To increase the structural efficiency of integrally machined aluminium alloy stiffened panels, it is plausible to introduce plate sub-stiffening to increase the local stability and thus panel static strength performance. Reported herein is the experimental validation of prismatic sub-stiffening, and the computational verification of such concepts within larger recurring structure. The experimental work demonstrates the potential to 'control' plate buckling modes. For the tested sub-stiffening design, an initial plate buckling performance gain of +89% over an equivalent mass design was measured. The numerical simulations, modelling the tested sub-stiffening design, demonstrate equivalent behaviour and performance gains (+66%) within larger structures consisting of recurring panels. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new design method that greatly enhances the reflectivity bandwidth and angular stability beyond what is possible with a simple Salisbury screen is described. The performance improvement is obtained from a frequency selective surface (FSS) which is sandwiched between the outermost 377 Ω/square resistive sheet and the ground plane. This is designed to generate additional reflection nulls at two predetermined frequencies by selecting the size of the two unequal length printed dipoles in each unit cell. A multiband Salisbury screen is realised by adjusting the reflection phase of the FSS to position one null above and the other below the inherent absorption band of the structure. Alternatively by incorporating resistive elements midway on the dipoles, it is shown that the three absorption bands can be merged to create a structure with a −10 dB reflectivity bandwidth which is 52% larger and relatively insensitive to incident angle compared to a classical Salisbury screen having the same thickness. CST Microwave Studio was used to optimise the reflectivity performance and simulate the radar backscatter from the structure. The numerical results are shown to be in close agreement with bistatic measurements for incident angles up to 40° over the frequency range 5.4−18 GHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical and numerical investigations are carried out for the amplitude modulation of dust-ion acoustic waves (DIAW) propagating in an unmagnetized weakly coupled collisionless fully ionized plasma consisting of isothermal electrons, warm ions and charged dust grains. Modulation oblique (by an angle theta) to the carrier wave propagation direction is considered. The stability analysis, based on a nonlinear Schrodinger-type equation (NLSE), exhibits a sensitivity of the instability region to the modulation angle theta, the dust concentration and the ion temperature. It is found that the ion temperature may strongly modify the wave's stability profile, in qualitative agreement with previous results, obtained for an electron-ion plasma. The effect of the ion temperature on the formation of DIAW envelope excitations (envelope solitons) is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the existence and stability of multisite discrete breathers in two prototypical non-square Klein-Gordon lattices, namely a honeycomb and a hexagonal one. In the honeycomb case we consider six-site configurations and find that for soft potential and positive coupling the out-of-phase breather configuration and the charge-two vortex breather are linearly stable, while the in-phase and charge-one vortex states are unstable. In the hexagonal lattice, we first consider three-site configurations. In the case of soft potential and positive coupling, the in-phase configuration is unstable and the charge-one vortex is linearly stable. The out-of-phase configuration here is found to always be linearly unstable. We then turn to six-site configurations in the hexagonal lattice. The stability results in this case are the same as in the six-site configurations in the honeycomb lattice. For all configurations in both lattices, the stability results are reversed in the setting of either hard potential or negative coupling. The study is complemented by numerical simulations which are in very good agreement with the theoretical predictions. Since neither the form of the on-site potential nor the sign of the coupling parameter involved have been prescribed, this description can accommodate inverse-dispersive systems (e. g. supporting backward waves) such as transverse dust-lattice oscillations in dusty plasma (Debye) crystals or analogous modes in molecular chains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a FORTRAN 77 code for evaluation of resonance pole positions and residues of a numerical scattering matrix element in the complex energy (CE) as well as in the complex angular momentum (CAM) planes. Analytical continuation of the S-matrix element is performed by constructing a type-II Pade approximant from given physical values (Bessis et al. (1994) [421: Vrinceanu et al. (2000) [24]; Sokolovski and Msezane (2004) [23]). The algorithm involves iterative 'preconditioning' of the numerical data by extracting its rapidly oscillating potential phase component. The code has the capability of adding non-analytical noise to the numerical data in order to select 'true' physical poles, investigate their stability and evaluate the accuracy of the reconstruction. It has an option of employing multiple-precision (MPFUN) package (Bailey (1993) [451) developed by D.H. Bailey wherever double precision calculations fail due to a large number of input partial waves (energies) involved. The code has been successfully tested on several models, as well as the F + H-2 -> HE + H, F + HD : HE + D, Cl + HCI CIH + Cl and H + D-2 -> HD + D reactions. Some detailed examples are given in the text.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method is described to allow searches for transonic aeroelastic instability of realistically sized aircraft models in multidimensional parameter spaces when computational fluid dynamics are used to model the aerodynamics. Aeroelastic instability is predicted from a small nonlinear eigenvalue problem. The approximation of the computationally expensive interaction term modeling the fluid response is formulated to allow the automated and blind search for aeroelastic instability. The approximation uses a kriging interpolation of exact numerical samples covering the parameter space. The approach, demonstrated for the Goland wing and the multidisciplinary optimization transport wing, results in stability analyses over whole flight envelopes at an equivalent cost of several steady-state simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This book provides an in-depth treatment of the study of the stability of engineering structures. Contributions from internationally recognized leaders in the field ensure a wide coverage of engineering disciplines in which structural stability is of importance, in particular the analytical and numerical modelling of structural stability applied to aeronautical, civil, marine and offshore structures. The results from a number of comprehensive experimental test programs are also presented, thus enhancing our understanding of stability phenomena as well as validating the analytical and computational solution schemes presented. A variety of structural materials are investigated with special emphasis on carbon-fibre composites, which are being increasingly utilized in weight-critical structures. Instabilities at the meso- and micro-scales are also discussed. This book will be particularly relevant to professional engineers, graduate students and researchers interested in structural stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical model of a tanpura string is presented, based on a recently developed, stability-preserving way of incorporating the non-smooth forces involved in the impactive distributed contact between the string and the bridge. By defining and modelling the string-bridge contact over the full length of the bridge, the simulated vibrations can be monitored through the force signals at both the bridge and the nut. As such it offers a reference model for both measurements and sound synthesis. Simulations starting from different types of initial conditions demonstrate that the model reproduces the main characteristic feature of the tanpura, namely the sustained appearance of a precursor in the force waveforms, carrying a band of overtones which decrease in frequency as the string vibrations decay. Results obtained with the numerical model are used to examine, through comparison, the effect of the bridge and of the thread on the vibrations.