55 resultados para MALATE DEHYDROGENASE
Resumo:
The enantiopure (1S, 2S)-cis-dihydrodiol metabolites 2B-5B have been obtained in low yield from the corresponding monosubstituted halobenzene substrates 2A-5A, using a wild-type strain of Pseudomonas putida (ML2) containing benzene dioxygenase (BDO). Benzene cis-dihydrodiol dehydrogenase (BCD) from P. putida ML2 and naphthalene cis-dihydrodiol dehydrogenase (NCD) from P. putida 8859 were purified and used in a comparative study of the stereoselective biotransformation of cis-dihydrodiol enantiomers 2B-5B. The BCD and NCD enzymes were found to accept cis-dihydrodiol enantiomers of monosubstituted benzene cis-dihydrodiol substrates 2B-5B of opposite absolute configuration. The acyclic alkene 1,2-diols 10-17 were also found to be acceptable substrates for BCD.
Resumo:
In this study the nature of the interaction between Tween-20 and lactate dehydrogenase (LDH) was investigated using isothermal titration calorimetry (ITC). In addition the effects of the protein and surfactant on the interfacial properties were followed with interfacial rheology and surface tension measurements in order to understand the mechanism by which the surfactant prevents protein adsorption to the air– water interface. Comparisons were made with Tween-40 and Tween-80 in order to further investigate the mechanism. ITC measurements indicated a weak, probably hydrophobic, interaction between Tween-20 and LDH. Prevention of LDH adsorption to the air–water interface by the Tween surfactants was correlated with surface energy rather than surfactant CMC. While surface pressure appears to be the main driving force for the displacement of LDH from the air–water interface by Tween-20 a solubilisation mechanism may exist for other protein molecules. More generally the results of this study highlight the value of the use of ITC and interfacial measurements in characterising the surface behaviour of mixed surfactant and protein systems.
Resumo:
Rhodococcus sp. NCIMB112038 can utilize naphthalene as its sole carbon and energy source. The gene encoding cis-naphthalene dihydrodiol dehydrogenase (narB) of this strain has been cloned and sequenced. Expression of NCIMB12038 cis-naphthalene dihydrodiol dehydrogenase was demonstrated in Escherichia coli cells. narB encodes a putative protein of 271 amino acids and shares 39% amino acid identity with the cis-naphthalene dihydrodiol dehydrogenase from Pseudomonas putida G7. Comparison of NarB with some putative cis-dihydrodiol dehydrogenases from Rhodococcus species revealed significant differences between these proteins. NarB together with two other proteins forms a new group of cis-dihydrodiol dehydrogenases. (C) 2000 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Alternative NADH dehydrogenases (NADH:ubiquinone oxidoreductases) are single subunit respiratory chain enzymes found in plant and fungal mitochondria and in many bacteria. It is unclear how these peripheral membrane proteins interact with their hydrophobic substrate ubiquinone. Known inhibitors of alternative NADH dehydrogenases bind with rather low affinities. We have identified 1-hydroxy-2-dodecyl-4(1H)quinolone as a high affinity inhibitor of alternative NADH dehydrogenase from Yarrowia lipolytica. Using this compound, we have analyzed the bisubstrate and inhibition kinetics for NADH and decylubiquinone. We found that the kinetics of alternative NADH dehydrogenase follow a ping-pong mechanism. This suggests that NADH and the ubiquinone headgroup interact with the same binding pocket in an alternating fashion.
Resumo:
Background: Low tumour expression levels of thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD) and thymidine phosphorylase (TP) have been linked with improved outcome for colorectal cancer (CRC) patients treated with 5-fluorouracil (5-FU). It is unclear whether this occurs because such tumours have better prognosis or they are more sensitive to 5-FU treatment.