52 resultados para Hilbert Cube
Resumo:
We are discussing certain combinatorial and counting problems related to quadratic algebras. First we give examples which confirm the Anick conjecture on the minimal Hilbert series for algebras given by $n$ generators and $\frac {n(n-1)}{2}$ relations for $n \leq 7$. Then we investigate combinatorial structure of colored graph associated to relations of RIT algebra. Precise descriptions of graphs (maps) corresponding to algebras with maximal Hilbert series are given in certain cases. As a consequence it turns out, for example, that RIT algebra may have a maximal Hilbert series only if components of the graph associated to each color are pairwise 2-isomorphic.
Resumo:
Let H be a (real or complex) Hilbert space. Using spectral theory and properties of the Schatten–Von Neumann operators, we prove that every symmetric tensor of unit norm in HoH is an infinite absolute convex combination of points of the form xox with x in the unit sphere of the Hilbert space. We use this to obtain explicit characterizations of the smooth points of the unit ball of HoH .
Resumo:
We construct a bounded function $H : l_2\times l_2 \to R$ with continuous Frechet derivative such that for any $q_0\in l_2$ the Cauchy problem $\dot p= - {\partial H\over\partial q}$, $\dot q={\partial H\over\partial p}$, $p(0) = 0$, q(0) = q_0$ has no solutions in any neighborhood of zero in R.
Resumo:
An example of a sigma -compact infinite-dimensional pre-Hilbert space H is constructed such that any continuous linear operator T: H --> H is of the form T = lambdaI + F for some lambda is an element of R and for a finite-dimensional continuous linear operator F. A class of simple examples of pre-Hilbert spaces nonisomorphic to their closed hyperplanes is given. A sigma -compact pre-Hilbert space H isomorphic to H x R x R and nonisomorphic to H x R is also constructed.
Resumo:
An example is constructed of an infinite-dimensional separable pre-Hilbert space non-homeomorphic to any of its closed hyperplanes.
Resumo:
The singular continuous spectrum of the Liouville operator of quantum statistical physics is, in general, properly included in the difference of the spectral values of the singular continuous spectrum of the associated Hamiltonian. The absolutely continuous spectrum of the Liouvillian may arise from a purely singular continuous Hamiltonian. We provide the correct formulas for the spectrum of the Liouville operator and show that the decaying states of the singular continuous subspace of the Hamiltonian do not necessarily contribute to the absolutely continuous subspace of the Liouvillian.
Resumo:
We study the question on whether the famous Golod–Shafarevich estimate, which gives a lower bound for the Hilbert series of a (noncommutative) algebra, is attained. This question was considered by Anick in his 1983 paper ‘Generic algebras and CW-complexes’, Princeton Univ. Press, where he proved that the estimate is attained for the number of quadratic relations $d\leq n^2/4$
and $d\geq n^2/2$, and conjectured that it is the case for any number of quadratic relations. The particular point where the number of relations is equal to $n(n-1)/2$ was addressed by Vershik. He conjectured that a generic algebra with this number of relations is finite dimensional. We announce here the result that over any infinite field, the Anick conjecture holds for $d \geq 4(n2+n)/9$ and an arbitrary number of generators. We also discuss the result that confirms the Vershik conjecture over any field of characteristic 0, and a series of related
asymptotic results.
Resumo:
This limited experimental investigation examined the relationships between the compressive strengths of cubes, cylinders, cores and the estimated compressive strengths derived from pull-off tests for a relatively low-strength structural-grade concrete (<35 N/mm2). Test specimens were cast and tested at 7, 14, 28, 56 and 84 days. The relationships of the trends of the test results to the trends of results of standard cube specimens and standard cylinder specimens were compared. It was found that the mean strength of each type of specimen tended to increase as a function of the natural logarithm of the specimen age. The mean strength of cylinders of length/diameter ratio 2.0 was found to be slightly greater (by about 7.5%) than the generally accepted value of 80% of the mean cube strength. Core results were corrected using correction factors defined in BS 6089 and the UK national annex to BS EN 12504-1. The mean corrected cube strength of cores taken from cubes was approximately 12% greater than the mean companion cube strength. The mean corrected cylinder strength of cores taken from cubes was approximately 5% greater than the mean companion cylinder strength. The potential cube and cylinder strengths of cores taken from slabs cured under different environmental conditions correlated well with companion cube and cylinder strengths respectively at 28 days. The pull-off test results gave a variable but, on average, slightly conservative estimate of the cube compressive strength of the relatively low-strength structural-grade concrete, using a simple general linear estimated compressive cube strength to tensile strength correlation factor of 10.
Resumo:
We explore the challenges posed by the violation of Bell-like inequalities by d-dimensional systems exposed to imperfect state-preparation and measurement settings. We address, in particular, the limit of high-dimensional systems, naturally arising when exploring the quantum-to-classical transition. We show that, although suitable Bell inequalities can be violated, in principle, for any dimension of given subsystems, it is in practice increasingly challenging to detect such violations, even if the system is prepared in a maximally entangled state. We characterize the effects of random perturbations on the state or on the measurement settings, also quantifying the efforts needed to certify the possible violations in case of complete ignorance on the system state at hand.