140 resultados para Fpga
Resumo:
This paper presents a multi-language framework to FPGA hardware development which aims to satisfy the dual requirement of high-level hardware design and efficient hardware implementation. The central idea of this framework is the integration of different hardware languages in a way that harnesses the best features of each language. This is illustrated in this paper by the integration of two hardware languages in the form of HIDE: a structured hardware language which provides more abstract and elegant hardware descriptions and compositions than are possible in traditional hardware description languages such as VHDL or Verilog, and Handel-C: an ANSI C-like hardware language which allows software and hardware engineers alike to target FPGAs from high-level algorithmic descriptions. On the one hand, HIDE has proven to be very successful in the description and generation of highly optimised parameterisable FPGA circuits from geometric descriptions. On the other hand, Handel-C has also proven to be very successful in the rapid design and prototyping of FPGA circuits from algorithmic application descriptions. The proposed integrated framework hence harnesses HIDE for the generation of highly optimised circuits for regular parts of algorithms, while Handel-C is used as a top-level design language from which HIDE functionality is dynamically invoked. The overall message of this paper posits that there need not be an exclusive choice between different hardware design flows. Rather, an integrated framework where different design flows can seamlessly interoperate should be adopted. Although the idea might seem simple prima facie, it could have serious implications on the design of future generations of hardware languages.
Resumo:
This paper, chosen as a best paper from the 2004 SAMOS Workshop on Computer Systems: describes a novel, efficient methodology for automatically creating embedded DSP computer systems. The novelty arises since now embedded electronic signal processing systems, such as radar or sonar, can be designed by anyone from the algorithm level, i.e. no low level system design experience is required, whilst still achieving low controllable implementation overheads and high real time performance. In the chosen design example, a bank of Normalised Lattice Filter (NLF) components is created which a four-fold reduction in the required processing resource with no performance decrease.
Resumo:
This paper, chosen as a best paper from the 2005 SAMOS Workshop on Computer Systems: describes the for the first time the major Abhainn project for automated system level design of embedded signal processing systems. In particular, this describes four key novelties: novel algorithm modelling techniques for DSP systems, automated implementation realisation, algorithm transformation for system optimisation and automated inter-processor communication. This is applied to two complex systems: a radar and sonar system. In both cases technology which allows non-experts to automatically create low-overhead, high performance embedded signal processing systems is exhibited.
Resumo:
Grey Level Co-occurrence Matrix (GLCM), one of the best known tool for texture analysis, estimates image properties related to second-order statistics. These image properties commonly known as Haralick texture features can be used for image classification, image segmentation, and remote sensing applications. However, their computations are highly intensive especially for very large images such as medical ones. Therefore, methods to accelerate their computations are highly desired. This paper proposes the use of programmable hardware to accelerate the calculation of GLCM and Haralick texture features. Further, as an example of the speedup offered by programmable logic, a multispectral computer vision system for automatic diagnosis of prostatic cancer has been implemented. The performance is then compared against a microprocessor based solution.
Resumo:
A variation of the least means squares (LMS) algorithm, called the delayed LMS (DLMS) algorithm is an ideally suited to achieve highly pipelined, adaptive digital filter implementations. The paper presents an efficient method of determining the delays in the DLMS filter and then transferring these delays using retiming in order to achieve fully pipelined circuit architectures for FPGA implementation. The method has been used to derive a series of retimed delayed LMS (RDLMS) architectures, which considerable reduce the number of delays and convergence time and give superior performance in terms of throughput rate when compared to previous work. Three circuit architectures and three hardware shared versions are presented which have been implemented using the Virtex-II FPGA technology resulting in a throughout rate of 182 Msample/s.
Resumo:
High-speed field-programmable gate array (FPGA) implementations of an adaptive least mean square (LMS) filter with application in an electronic support measures (ESM) digital receiver, are presented. They employ "fine-grained" pipelining, i.e., pipelining within the processor and result in an increased output latency when used in the LMS recursive system. Therefore, the major challenge is to maintain a low latency output whilst increasing the pipeline stage in the filter for higher speeds. Using the delayed LMS (DLMS) algorithm, fine-grained pipelined FPGA implementations using both the direct form (DF) and the transposed form (TF) are considered and compared. It is shown that the direct form LMS filter utilizes the FPGA resources more efficiently thereby allowing a 120 MHz sampling rate.