40 resultados para Electric power supplies to apparatus
Resumo:
Dwindling fossil fuel resources and pressures to reduce greenhouse gas (GHG) emissions will result in a more diverse range of generation portfolios for future electricity systems. Irrespective of the portfolio mix the overarching requirement for all electricity suppliers and system operators is that supply instantaneously meets demand and that robust operating standards are maintained to ensure a consistent supply of high quality electricity to end-users. Therefore all electricity market participants will ultimately need to use a variety of tools to balance the power system. Thus the role of demand side management (DSM) with energy storage will be paramount to integrate future diverse generation portfolios. Electric water heating (EWH) has been studied previously, particularly at the domestic level to provide load control, peak shave and to benefit end-users financially with lower bills, particularly in vertically integrated monopolies. In this paper, a continuous Direct Load Control (DLC) EWH algorithm is applied in a liberalized market environment using actual historical electricity system and market data to examine the potential energy savings, cost reductions and electricity system operational improvements.
Resumo:
Environmental concerns and fossil fuel shortage put pressure on both power and transportation systems. Electric vehicles (EVs) are thought to be a good solution to these problems. With EV adoption, energy flow is two way: from grid to vehicle and from vehicle to grid, which is known as vehicle-to-grid (V2G) today. This paper considers electric power systems and provides a review of the impact of V2G on power system stability. The concept and basics of V2G technology are introduced at first, followed by a description of EV application in the world. Several technical issues are detailed in V2G modeling and capacity forecasting, steady-state analysis and stability analysis. Research trends of such topics are declared at last.
Resumo:
Gene expression data can provide a very rich source of information for elucidating the biological function on the pathway level if the experimental design considers the needs of the statistical analysis methods. The purpose of this paper is to provide a comparative analysis of statistical methods for detecting the differentially expression of pathways (DEP). In contrast to many other studies conducted so far, we use three novel simulation types, producing a more realistic correlation structure than previous simulation methods. This includes also the generation of surrogate data from two large-scale microarray experiments from prostate cancer and ALL. As a result from our comprehensive analysis of 41,004 parameter configurations, we find that each method should only be applied if certain conditions of the data from a pathway are met. Further, we provide method-specific estimates for the optimal sample size for microarray experiments aiming to identify DEP in order to avoid an underpowered design. Our study highlights the sensitivity of the studied methods on the parameters of the system. © 2012 Tripahti and Emmert-Streib.
Resumo:
We describe a pre-processing correlation attack on an FPGA implementation of AES, protected with a random clocking countermeasure that exhibits complex variations in both the location and amplitude of the power consumption patterns of the AES rounds. It is demonstrated that the merged round patterns can be pre-processed to identify and extract the individual round amplitudes, enabling a successful power analysis attack. We show that the requirement of the random clocking countermeasure to provide a varying execution time between processing rounds can be exploited to select a sub-set of data where sufficient current decay has occurred, further improving the attack. In comparison with the countermeasure's estimated security of 3 million traces from an integration attack, we show that through application of our proposed techniques that the countermeasure can now be broken with as few as 13k traces.
Resumo:
A new approach to determine the local boundary of voltage stability region in a cut-set power space (CVSR) is presented. Power flow tracing is first used to determine the generator-load pair most sensitive to each branch in the interface. The generator-load pairs are then used to realize accurate small disturbances by controlling the branch power flow in increasing and decreasing directions to obtain new equilibrium points around the initial equilibrium point. And, continuous power flow is used starting from such new points to get the corresponding critical points around the initial critical point on the CVSR boundary. Then a hyperplane cross the initial critical point can be calculated by solving a set of linear algebraic equations. Finally, the presented method is validated by some systems, including New England 39-bus system, IEEE 118-bus system, and EPRI-1000 bus system. It can be revealed that the method is computationally more efficient and has less approximation error. It provides a useful approach for power system online voltage stability monitoring and assessment. This work is supported by National Natural Science Foundation of China (No. 50707019), Special Fund of the National Basic Research Program of China (No. 2009CB219701), Foundation for the Author of National Excellent Doctoral Dissertation of PR China (No. 200439), Tianjin Municipal Science and Technology Development Program (No. 09JCZDJC25000), National Major Project of Scientific and Technical Supporting Programs of China During the 11th Five-year Plan Period (No. 2006BAJ03A06). ©2009 State Grid Electric Power Research Institute Press.
Resumo:
This paper presents a voltage and power quality enhancement scheme for a doubly-fed induction generator (DFIG) wind farm during variable wind conditions. The wind profiles were derived considering the measured data at a DFIG wind farm located in Northern Ireland (NI). The aggregated DFIG wind farm model was validated using measured data at a wind farm during variable generation. The voltage control strategy was developed considering the X/R ratio of the wind farm feeder which connects the wind farm and the grid. The performance of the proposed strategy was evaluated for different X/R ratios, and wind profiles with different characteristics. The impact of flicker propagation along the wind farm feeder and effectiveness of the proposed strategy is also evaluated with consumer loads connected to the wind farm feeder. It is shown that voltage variability and short-term flicker severity is significantly reduced following implementation of the novel strategy described.
Resumo:
Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operational and licensing requirements. These two scheduling problems are commonly formulated with non-smooth cost functions respectively considering various effects and constraints, such as the valve point effect, power balance and ramp rate limits. The expected increase in plug-in electric vehicles is likely to see a significant impact on the power system due to high charging power consumption and significant uncertainty in charging times. In this paper, multiple electric vehicle charging profiles are comparatively integrated into a 24-hour load demand in an economic and environment dispatch model. Self-learning teaching-learning based optimization (TLBO) is employed to solve the non-convex non-linear dispatch problems. Numerical results on well-known benchmark functions, as well as test systems with different scales of generation units show the significance of the new scheduling method.
Resumo:
A novel model-based principal component analysis (PCA) method is proposed in this paper for wide-area power system monitoring, aiming to tackle one of the critical drawbacks of the conventional PCA, i.e. the incapability to handle non-Gaussian distributed variables. It is a significant extension of the original PCA method which has already shown to outperform traditional methods like rate-of-change-of-frequency (ROCOF). The ROCOF method is quick for processing local information, but its threshold is difficult to determine and nuisance tripping may easily occur. The proposed model-based PCA method uses a radial basis function neural network (RBFNN) model to handle the nonlinearity in the data set to solve the no-Gaussian issue, before the PCA method is used for islanding detection. To build an effective RBFNN model, this paper first uses a fast input selection method to remove insignificant neural inputs. Next, a heuristic optimization technique namely Teaching-Learning-Based-Optimization (TLBO) is adopted to tune the nonlinear parameters in the RBF neurons to build the optimized model. The novel RBFNN based PCA monitoring scheme is then employed for wide-area monitoring using the residuals between the model outputs and the real PMU measurements. Experimental results confirm the efficiency and effectiveness of the proposed method in monitoring a suite of process variables with different distribution characteristics, showing that the proposed RBFNN PCA method is a reliable scheme as an effective extension to the linear PCA method.
Resumo:
The research on integrated energy system technology meets the major national strategic needs of China. Focusing on the vital theory of planning and optimal operation of integrated energy system, six fundamental problems in the study of integrated energy system are proposed systematically, including the common modeling technology for integrated energy system, the integrated simulation of integrated energy system, the planning theory and method of integrated energy system, the security theory and method of integrated energy system, the optimal operation and control of integrated energy system, the benefit assessment and operational mechanisms of integrated energy system. The status of domestic and foreign research directions related to each scientific problems are surveyed and anticipated.
Resumo:
Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.
Resumo:
Microturbines are among the most successfully commercialized distributed energy resources, especially when they are used for combined heat and power generation. However, the interrelated thermal and electrical system dynamic behaviors have not been fully investigated. This is technically challenging due to the complex thermo-fluid-mechanical energy conversion processes which introduce multiple time-scale dynamics and strong nonlinearity into the analysis. To tackle this problem, this paper proposes a simplified model which can predict the coupled thermal and electric output dynamics of microturbines. Considering the time-scale difference of various dynamic processes occuring within microturbines, the electromechanical subsystem is treated as a fast quasi-linear process while the thermo-mechanical subsystem is treated as a slow process with high nonlinearity. A three-stage subspace identification method is utilized to capture the dominant dynamics and predict the electric power output. For the thermo-mechanical process, a radial basis function model trained by the particle swarm optimization method is employed to handle the strong nonlinear characteristics. Experimental tests on a Capstone C30 microturbine show that the proposed modeling method can well capture the system dynamics and produce a good prediction of the coupled thermal and electric outputs in various operating modes.
Resumo:
This article is concerned with resituating the state at the centre of the analytical stage and, concomitantly, with drawing attention to the dangers of losing sight of the state as a locus of power. It seeks to uncover the relationship between two related lines of critical inquiry: Marxist and Foucauldian theories of the state; and the attempts by three postwar American novelist (Ken Kesey, William Burroughs and E.L. Doctorow) to determine the nature and extent of this power and to consider under what conditions political struggle might be possible. It argues that such a move is needed because recent critical analysis has been too preoccupied by corporeal micropolitics and global macropolitics, and that the postwar American novel can help us in this move because it is centrally concerned with the repressive potentiality of the US state. It maintains that the resuscitation of Marxist state theories in early 1970s and a debate between Poulantzas and Foucault is intriguingly foreshadowed and even critiqued by these novels. Consequently, it concludes that these novels constitute an unrecognized pre-history of what would become one of the key intellectual debates of the late twentieth century: an engagement between Marxist and post-structuralist conceptions of the power and resistance.
Resumo:
The design, construction and subsequent operation of the 75 kW oscillating water column wave power plant on the Isle of Islay has provided a significant insight into the practicality of wave power conversion. The development of wave power plant poses a significant design and construction challenge for not only civil but also mechanical and electrical engineers. The plant must withstand the immense forces imposed during storms, yet efficiently convert the slow cyclic motion of waves into a useful energy source such as electricity and do so at a price competitive with other forms of generation. In addition, the hostile marine environment hampers the construction process and the variability of the wave resource poses problems for electrical control and grid integration. Many sceptics consider wave power conversion to be too difficult, too expensive and too variable to justify the effort and expense necessary to develop this technology. However, the authors contend that with modular wave power systems developed from the practical experience gained with the Islay plant, wave power is a viable technology with a considerable world market potential. However, this technology is still at the early stages of development and will require the construction of a number of different prototypes before there is extensive commercial exploitation.
Resumo:
Wavelets introduce new classes of basis functions for time-frequency signal analysis and have properties particularly suited to the transient components and discontinuities evident in power system disturbances. Wavelet analysis involves representing signals in terms of simpler, fixed building blocks at different scales and positions. This paper examines the analysis and subsequent compression properties of the discrete wavelet and wavelet packet transforms and evaluates both transforms using an actual power system disturbance from a digital fault recorder. The paper presents comparative compression results using the wavelet and discrete cosine transforms and examines the application of wavelet compression in power monitoring to mitigate against data communications overheads.
Resumo:
We present a technique for simultaneous focusing and energy selection of high-current, mega-electron volt proton beams With the use of radial, transient electric fields (107 to 1010 volts per meter) triggered on the inner walls of a hollow microcylinder by an intense subpicosecond laser pulse. Because of the transient nature of the focusing fields, the proposed method allows selection of a desired range out of the spectrum of the polyenergetic proton beam. This technique addresses current drawbacks of laser-accelerated proton beams, such as their broad spectrum and divergence at the source.