74 resultados para Cold atmospheric plasma


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of a cold (<40 °C) radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. Gel electrophoresis was used to analyze the DNA forms post-treatment. The experimental data are fitted to a rate equation model that allows for quantitative determination of the rates of single and double strand break formation. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent progress in plasma science and technology has enabled the development of a new generation of stable cold non-equilibrium plasmas operating at ambient atmospheric pressure. This opens horizons for new plasma technologies, in particular in the emerging field of plasma medicine. These non-equilibrium plasmas are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. The effect of a cold radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks. Plasma manipulation techniques for controlled energy delivery are highly desirable. Numerical simulations are employed for detailed investigations of the electron dynamics, which determines the generation of reactive species. New concepts based on nonlinear power dissipation promise superior strategies to control energy transport for tailored technological exploitations. © 2012 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma diagnostics of atmospheric plasmas is a key tool in helping to understand processing performance issues. This paper presents an electrical, optical and thermographic imaging study of the PlasmaStream atmospheric plasma jet system. The system was found to exhibit three operating modes; one constricted/localized plasma and two extended volume plasmas. At low power and helium flows the plasma is localized at the electrodes and has the electrical properties of a corona/filamentary discharge with electrical chaotic temporal structure. With increasing discharge power and helium flow the plasma expands into the volume of the tube, becoming regular and homogeneous in appearance. Emission spectra show evidence of atomic oxygen, nitric oxide and the hydroxyl radical production. Plasma activated gas temperature deduced from the rotational temperature of nitrogen molecules was found to be of order of 400 K: whereas thermographic imaging of the quartz tube yielded surface temperatures between 319 and 347 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A real-time VHF swept frequency (20–300 MHz) reflectometry measurement for radio-frequency capacitive-coupled atmospheric pressure plasmas is described. The measurement is scalar, non-invasive and deployed on the main power line of the plasma chamber. The purpose of this VHF signal injection is to remotely interrogate in real-time the frequency reflection properties of plasma. The information obtained is used for remote monitoring of high-value atmospheric plasma processing. Measurements are performed under varying gas feed (helium mixed with 0–2% oxygen) and power conditions (0–40 W) on two contrasting reactors. The first is a classical parallel-plate chamber driven at 16 MHz with well-defined electrical grounding but limited optical access and the second is a cross-field plasma jet driven at 13.56 MHz with open optical access but with poor electrical shielding of the driven electrode. The electrical measurements are modelled using a lumped element electrical circuit to provide an estimate of power dissipated in the plasma as a function of gas and applied power. The performances of both reactors are evaluated against each other. The scalar measurements reveal that 0.1% oxygen admixture in helium plasma can be detected. The equivalent electrical model indicates that the current density between the parallel-plate reactor is of the order of 8–20 mA cm-2 . This value is in accord with 0.03 A cm-2 values reported by Park et al (2001 J. Appl. Phys. 89 20–8). The current density of the cross-field plasma jet electrodes is found to be 20 times higher. When the cross-field plasma jet unshielded electrode area is factored into the current density estimation, the resultant current density agrees with the parallel-plate reactor. This indicates that the unshielded reactor radiates electromagnetic energy into free space and so acts as a plasma antenna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of varying process parameters on atmospheric plasma characteristics and properties of nanometre thick siloxane coatings is investigated in a reel-to-reel deposition process. Varying plasma operation modes were observed with increasing applied power for helium and helium/oxygen plasmas. The electrical and optical behaviour of the dielectric barrier discharge were determined from current/voltage, emission spectroscopy and time resolved light emission measurements. As applied power increased, multiple discharge events occurred, producing a uniform multi-peak pseudoglow discharge, resulting in an increase in the discharge gas temperature. The effects of different operating modes on coating oxidation and growth rates were examined by injecting hexamethyldisiloxane liquid precursor into the chamber under varying operating conditions. A quenching effect on the plasma was observed, causing a decrease in plasma input power and emission intensity. Siloxane coatings deposited in helium plasmas had a higher organic component and higher growth rates than those deposited in helium/oxygen plasmas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The evolution of the intensity of a relativistic laser beam propagating through a dense quantum plasma is investigated, by considering different plasma regimes. A cold quantum fluid plasma and then a thermal quantum description(s) is (are) adopted, in comparison with the classical case of reference. Considering a Gaussian beam cross-section, we investigate both the longitudinal compression and lateral/longitudinal localization of the intensity of a finite-radius electromagnetic pulse. By employing a quantum plasma fluid model in combination with Maxwell's equations, we rely on earlier results on the quantum dielectric response, to model beam-plasma interaction. We present an extensive parametric investigation of the dependence of the longitudinal pulse compression mechanism on the electron density in cold quantum plasmas, and also study the role of the Fermi temperature in thermal quantum plasmas. Our numerical results show pulse localization through a series of successive compression cycles, as the pulse propagates through the plasma. A pulse of 100 fs propagating through cold quantum plasma is compressed to a temporal size of approximate to 1.35 attosecond and a spatial size of approximate to 1.08 10(-3) cm. Incorporating Fermi pressure via a thermal quantum plasma model is shown to enhance localization effects. A 100 fs pulse propagating through quantum plasma with a Fermi temperature of 350 K is compressed to a temporal size of approximate to 0.6 attosecond and a spatial size of approximate to 2.4 10(-3) cm. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Numerical investigations on mutual interactions between two spatially overlapping standing electromagnetic solitons in a cold unmagnetized plasma are reported. It is found that an initial state comprising of two overlapping standing solitons evolves into different end states, depending on the amplitudes of the two solitons and the phase difference between them. For small amplitude solitons with zero phase difference, we observe the formation of an oscillating bound state whose period depends on their initial separation. These results suggest the existence of a bound state made of two solitons in the relativistic cold plasma fluid model. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a perturbed nonlinear Schrodinger equation that describes the evolution of the envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-consistent framework for the description of the plasma response in the presence of localized electromagnetic field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrodinger equation with a focusing nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations in the initial phase or amplitude

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cold plasma is an emerging non-thermal processing technology that could be used for large scale leaf decontamination as an alternative to chlorine washing. In this study the effect of an atmospheric cold plasma apparatus (air DBD, 15 kV) on the safety, antioxidant activity and quality of radicchio (red chicory, Cichorium intybus L.) was investigated after 15 and 30 min of treatment (in afterglow at 70 mm from the discharge, at 22 °C and 60% of RH) and during storage. Escherichia coli O157:H7 inoculated on radicchio leaves was significantly reduced after 15 min cold plasma treatment (-1.35 log MPN/cm<sup>2</sup>). However, a 30 min plasma treatment was necessary to achieve a significant reduction of Listeria monocytogenes counts (-2.2 log CFU/cm<sup>2</sup>). Immediately after cold plasma treatment, no significant effects emerged in terms of antioxidant activity assessed by the ABTS and ORAC assay and external appearance of the radicchio leaves. Significant changes between treated and untreated radicchio leaves are quality defects based on the cold plasma treatment. Atmospheric cold plasma appears to be a promising processing technology for the decontamination of leafy vegetables although some criticalities, that emerged during storage, need to be considered in future studies.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Atmospheric pressure nonthermal-plasma-activated catalysis for the removal of NOx using hydrocarbon selective catalytic reduction has been studied utilizing toluene and n-octane as the hydrocarbon reductant. When the plasma was combined with a Ag/Al2O3 catalyst, a strong enhancement in activity was observed when compared with conventional thermal activation with high conversions of both. NOx and hydrocarbons obtained at temperature at temperature ≤250 °C, where the silver catalyst is normally inactive. Importantly, even in the absence of an external heat source, significant activity was obtained. This low temperature activity provides the basis for applying nonthermal plasmas to activate emission control catalysts during cold start conditions, which remains an important issue for mobile and stationary applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The atmospheric pressure plasma jet (APPJ) is a homogeneous non-equilibrium discharge at ambient pressure. It operates with a noble base gas and a percentage-volume admixture of a molecular gas. Applications of the discharge are mainly based on reactive species in the effluent. The effluent region of a discharge operated in helium with an oxygen admixture has been investigated. The optical emission from atomic oxygen decreases with distance from the discharge but can still be observed several centimetres in the effluent. Ground state atomic oxygen, measured using absolutely calibrated two-photon laser induced fluorescence spectroscopy, shows a similar behaviour. Detailed understanding of energy transport mechanisms requires investigations of the discharge volume and the effluent region. An atmospheric pressure plasma jet has been designed providing excellent diagnostics access and a simple geometry ideally suited for modelling and simulation. Laser spectroscopy and optical emission spectroscopy can be applied in the discharge volume and the effluent region.