20 resultados para BIOLOGIC WIDTH
Resumo:
This paper describes an investigation of various shroud bleed slot configurations of a centrifugal compressor using CFD with a manual multi-block structured grid generation method. The compressor under investigation is used in a turbocharger application for a heavy duty diesel engine of approximately 400 hp. The baseline numerical model has been developed and validated against experimental performance measurements. The influence of the bleed slot flow field on a range of operating conditions between surge and choke has been analysed in detail.
The impact of the returning bleed flow on the incidence at the impeller blade leading edge due to its mixing with the main through-flow has also been studied. From the baseline geometry, a number of modifications to the bleed slot width have been proposed, and a detailed comparison of the flow characteristics performed. The impact of slot variations on the inlet incidence angle has been investigated, highlighting the improvement in surge and choked flow capability. Along with this, the influence of the bleed slot on stabilising the blade passage flow by the suction of the tip and over-tip vortex flow by the slot has been considered near surge.
Resumo:
Purpose. The purpose of this study was to examine the effect of synthetic endothelin (ET)-1 peptides with antigenic potential for binding and biologic activity using an in vitro model of microvascular pericytes.
Resumo:
This paper describes an investigation of map width enhancement and a detailed analysis of the inducer flow field due to various bleed slot configurations and vanes in the annular cavity of a turbocharger centrifugal compressor. The compressor under investigation is used in a turbocharger application for a heavy duty diesel engine of approximately 400 hp. This investigation has been undertaken using a computational fluid dynamics (CFD) model of the full compressor stage, which includes a manual multiblock-structured grid generation method. The influence of the bleed slot flow on the inducer flow field at a range of operating conditions has been analyzed, highlighting the improvement in surge and choked flow capability. The impact of the bleed slot geometry variations and the inclusion of cavity vanes on the inlet incidence angle have been studied in detail by considering the swirl component introduced at the leading edge by the recirculating flow through the slot. Further, the overall stage efficiency and the nonuniform flow field at the inducer inlet have been also analyzed. The analysis revealed that increasing the slot width has increased the map width by about 17%. However, it has a small impact on the efficiency, due to the frictional and mixing losses. Moreover, adding vanes in the cavity improved the pressure ratio and compressor performance noticeably. A detail analysis of the compressor with cavity vanes has also been presented.
Resumo:
This paper presents an investigation of map width enhancement and the performance improvement of a turbocharger compressor using a series of static vanes in the annular cavity of a classical bleed slot system. The investigation has been carried out using both experimental and numerical analysis. The compressor stage used for this study is from a turbocharger unit used in heavy duty diesel engines of approximately 300 kW. Two types of vanes were designed and added to the annular cavity of the baseline classical bleed slot system. The purpose of the annular cavity vane technique is to remove some of the swirl that can be carried through the bleed slot system, which would influence the pressure
ratio. In addition to this, the series of cavity vanes provides a better guidance to the slot recirculating flow before it mixes with the impeller main inlet flow. Better guidance of the flow improves the mixing at the inducer inlet in the circumferential direction. As a consequence, the stability of the compressor is improved at lower flow rates and a wider map can be achieved. The impact of two cavity vane designs on the map width and performance of the compressor was highlighted through a detailed analysis of the impeller flow field. The numerical and experimental study revealed that an effective vane design can improve the map width and pressure ratio characteristic without an efficiency penalty compared to the classical bleed slot system without vanes. The comparison study between the cavity vane and noncavity vane configurations presented in this paper showed that the map width was improved by 14.3% due to a significant reduction in surge flow and the peak pressure ratio was improved by 2.25% with the addition of a series of cavity vanes in the annular cavity of the bleed slot system.
Resumo:
Determining the trophic niche width of an animal population and the relative degree to which a generalist population consists of dietary specialists are long-standing problems of ecology. It has been proposed that the variance of stable isotope values in consumer tissues could be used to quantify trophic niche width of consumer populations. However, this promising idea has not yet been rigorously tested. By conducting controlled laboratory experiments using model consumer populations (Daphnia sp., Crustacea) with controlled diets, we investigated the effect of individual- and population-level specialisation and generalism on consumer d C mean and variance values. While our experimental data follow general expectations, we extend current qualitative models to quantitative predictions of the dependence of isotopic variance on dietary correlation time, a measure for the typical time over which a consumer changes its diet. This quantitative approach allows us to pinpoint possible procedural pitfalls and critical sources of measurement uncertainty. Our results show that the stable isotope approach represents a powerful method for estimating trophic niche widths, especially when taking the quantitative concept of dietary correlation time into account. © 2012 The Authors.
Resumo:
This paper describes an investigation of various shroud bleed slot configurations of a centrifugal compressor using CFD with a manual multi-block structured grid generation method. The compressor under investigation is used in a turbocharger application for a heavy duty diesel engine of approximately 400hp. The baseline numerical model has been developed and validated against experimental performance measurements. The influence of the bleed slot flow field on a range of operating conditions between surge and choke has been analysed in detail. The impact of the returning bleed flow on the incidence at the impeller blade leading edge due to its mixing with the main through-flow has also been studied. From the baseline geometry, a number of modifications to the bleed slot width have been proposed, and a detailed comparison of the flow characteristics performed. The impact of slot variations on the inlet incidence angle has been investigated, highlighting the improvement in surge and choked flow capability. Along with this, the influence of the bleed slot on stabilizing the blade passage flow by the suction of the tip and over-tip vortex flow by the slot has been considered near surge.