2 resultados para position estimation
em QSpace: Queen's University - Canada
Resumo:
The ability to capture human motion allows researchers to evaluate an individual’s gait. Gait can be measured in different ways, from camera-based systems to Magnetic and Inertial Measurement Units (MIMU). The former uses cameras to track positional information of photo-reflective markers, while the latter uses accelerometers, gyroscopes, and magnetometers to measure segment orientation. Both systems can be used to measure joint kinematics, but the results vary because of their differences in anatomical calibrations. The objective of this thesis was to study potential solutions for reducing joint angle discrepancies between MIMU and camera-based systems. The first study worked to correct the anatomical frame differences between MIMU and camera-based systems via the joint angles of both systems. This study looked at full lower body correction versus correcting a single joint. Single joint correction showed slightly better alignment of both systems, but does not take into account that body segments are generally affected by more than one joint. The second study explores the possibility of anatomical landmarking using a single camera and a pointer apparatus. Results showed anatomical landmark position could be determined using a single camera, as the anatomical landmarks found from this study and a camera-based system showed similar results. This thesis worked on providing a novel way for obtaining anatomical landmarks with a single point-and-shoot camera, as well aligning anatomical frames between MIMUs and camera-based systems using joint angles.
Resumo:
This paper introduces the LiDAR compass, a bounded and extremely lightweight heading estimation technique that combines a two-dimensional laser scanner and axis maps, which represent the orientations of flat surfaces in the environment. Although suitable for a variety of indoor and outdoor environments, the LiDAR compass is especially useful for embedded and real-time applications requiring low computational overhead. For example, when combined with a sensor that can measure translation (e.g., wheel encoders) the LiDAR compass can be used to yield accurate, lightweight, and very easily implementable localization that requires no prior mapping phase. The utility of using the LiDAR compass as part of a localization algorithm was tested on a widely-available open-source data set, an indoor environment, and a larger-scale outdoor environment. In all cases, it was shown that the growth in heading error was bounded, which significantly reduced the position error to less than 1% of the distance travelled.