3 resultados para operant conditioning
em QSpace: Queen's University - Canada
Resumo:
Schedule-Induced Polydipsia (SIP) is an animal model of adjunctive drinking induced when a hungry rat receives food on a fixed interval of time. This model has been implemented as a model of compulsive behaviour and may represent a powerful tool to understand the neural mechanisms of compulsion. The bed nucleus of the stria terminalis (BNST) is thought to translate challenges to energy homeostasis into consummatory behaviours, and is therefore likely to contribute to drinking behaviours displayed by food restricted rats in the SIP paradigm. Furthermore, the BNST seems implicated in various compulsive behaviors, including compulsive water drinking in rats. Therefore, the goal of this project was to determine whether compulsive drinking in the SIP paradigm was associated with alterations in transmission at oval BNST (ovBNST) synapses. Rats undergoing the SIP procedure had restricted food access (1-hours/day) for a total of 29 days. After 7 days of food restriction and for the next 21 consecutive days, the rats had daily 2-hour access to operant conditioning chambers where they were presented with a 45-mg food pellet every minute. Water consumed during these 2-hour sessions was measured and the rats that drank 15 ml or more water for a minimum of 3 consecutive days were considered High Drinkers (HD; n=17) or otherwise, Low Drinkers (LD; n=13). Brain slices whole-cell patch clamp recordings conducted 18-hours after the last SIP training showed that chronic food restriction changed low frequency stimulation (LFS) - induced long-term potentiation of ovBNST inhibitory synaptic transmission (iLTP) into LFS - induced long-term depression (iLTD) in a majority of neurons, regardless of drinking behaviours. However, ad libitum access to food between the last day of SIP training and brain slice recordings (18-hour refeed) rescued LFS-induced iLTP in LD but not in HD, suggesting that impaired bi-directional plasticity of ovBNST synapses may contribute to compulsive drinking in the SIP paradigm.
Resumo:
Greenhouses have become an invaluable source of year-round food production. Further development of viable and efficient high performance greenhouses is important for future food security. Closing the greenhouse envelope from the environment can provide benefits in space heating energy savings, pest control, and CO2 enrichment. This requires the application of a novel air conditioning system to handle the high cooling loads experienced by a greenhouse. Liquid desiccant air-conditioning (LDAC) have been found to provide high latent cooling capacities, which is perfect for the application of a humid greenhouse microclimate. TRNSYS simulations were undertaken to study the feasibility of two liquid desiccant dehumidification systems based on their capacity to control the greenhouse microclimate, and their cooling performance. The base model (B-LDAC) included a natural gas boiler, and two cooling systems for seasonal operation. The second model (HP-LDAC) was a hybrid liquid desiccant-heat pump dehumidification system. The average tCOPdehum and tCOPtotal of the B-LDAC system increased from 0.40 and 0.56 in January to 0.94 and 1.09 in June. Increased load and performance during a sample summer day improved these values to 3.5 and 3.0, respectively. The average eCOPdehum and eCOPtotal values were 1.0 and 1.8 in winter, and 1.7 and 2.1 in summer. The HP-LDAC system produced similar daily performance trends where the annual average eCOPdehum and eCOPtotal values were 1.3 and 1.2, but the sample day saw peaks of 2.4 and 3.2, respectively. The B-LDAC and HP-LDAC results predicted greenhouse temperatures exceeding 30°C for 34% and 17% of the month of July, respectively. Similarly, humidity levels increased in summer months, with a maximum of 14% of the time spent over 80% in May for both models. The percentage of annual savings in space heating energy associated with closing the greenhouse to ventilation was 34%. The additional annual regeneration energy input was reduced by 26% to 526 kWhm-2, with the implementation of a heat recovery ventilator on the regeneration exhaust air. The models also predicted an electrical energy input of 245 kWhm-2 and 305 kWhm-2 for the B-LDAC and HP-LDAC simulations, respectively.
LEARNING IMPULSE CONTROL IN A NOVEL ANIMAL MODEL: SYNAPTIC, CELLULAR, AND PHARMACOLOGICAL SUBSTRATES
Resumo:
Impulse control, an executive process that restrains inappropriate actions, is impaired in numerous psychiatric conditions. This thesis reports three experiments that utilized a novel animal model of impulse control, the response inhibition (RI) task, to examine the substrates that underlie learning this task. In the first experiment, rats were trained to withhold responding on the RI task, and then euthanized for electrophysiological testing. Training in the RI task increased the AMPA/NMDA ratio at the synapses of pyramidal neurons in the prelimbic, but not infralimbic, region of the medial prefrontal cortex. This enhancement paralleled performance as subjects underwent acquisition and extinction of the inhibitory response. AMPA/NMDA was elevated only in neurons that project to the ventral striatum. Thus, this experiment identified a synaptic correlate of impulse control. In the second experiment, a separate group of rats were trained in the RI task prior to electrophysiological testing. Training in the RI task produced a decrease in membrane excitability in prelimbic, but not infralimbic, neurons as measured by maximal spiking evoked in response to increasing current injection. Importantly, this decrease was strongly correlated with successful inhibition in the task. Fortuitously, subjects trained in an operant control condition showed elevated infralimbic, but not prelimbic, excitability, which was produced by learning an anticipatory signal that predicted imminent reward availability. These experiments revealed two cellular correlates of performance, corresponding to learning two different associations under distinct task conditions. In the final experiment, rats were trained on the RI task under three conditions: Short (4-s), long (60-s), or unpredictable (1-s to 60-s) premature phases. These conditions produced distinct errors on the RI task. Interestingly, amphetamine increased premature responding in the short and long conditions, but decreased premature responding in the unpredictable condition. This dissociation may arise from interactions between amphetamine and underlying cognitive processes, such as attention, timing, and conditioned avoidance. In summary, this thesis showed that learning to inhibit a response produces distinct synaptic, cellular, and pharmacological changes. It is hoped that these advances will provide a starting point for future therapeutic interventions of disorders of impulse control.