2 resultados para end of life decision-making

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The developmental histories of 32 players in the Australian Football League (AFL), independently classified as either expert or less skilled in their perceptual and decision- making skills, were collected through a structured interview process and their year-on-year involvement in structured and deliberate play activities retrospectively determined. Despite being drawn from the same elite level of competition, the expert decision-makers differed from the less skilled in having accrued, during their developing years, more hours of experience in structured activities of all types, in structured activities in invasion-type sports, in invasion-type deliberate play, and in invasion activities from sports other than Australian football. Accumulated hours invested in invasion-type activities differentiated between the groups, suggesting that it is the amount of invasion-type activity that is experienced and not necessarily intent (skill development or fun) or specificity that facilitates the development of perceptual and decision-making expertise in this team sport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In our daily lives, we often must predict how well we are going to perform in the future based on an evaluation of our current performance and an assessment of how much we will improve with practice. Such predictions can be used to decide whether to invest our time and energy in learning and, if we opt to invest, what rewards we may gain. This thesis investigated whether people are capable of tracking their own learning (i.e. current and future motor ability) and exploiting that information to make decisions related to task reward. In experiment one, participants performed a target aiming task under a visuomotor rotation such that they initially missed the target but gradually improved. After briefly practicing the task, they were asked to select rewards for hits and misses applied to subsequent performance in the task, where selecting a higher reward for hits came at a cost of receiving a lower reward for misses. We found that participants made decisions that were in the direction of optimal and therefore demonstrated knowledge of future task performance. In experiment two, participants learned a novel target aiming task in which they were rewarded for target hits. Every five trials, they could choose a target size which varied inversely with reward value. Although participants’ decisions deviated from optimal, a model suggested that they took into account both past performance, and predicted future performance, when making their decisions. Together, these experiments suggest that people are capable of tracking their own learning and using that information to make sensible decisions related to reward maximization.