2 resultados para Procédé tandem

em QSpace: Queen's University - Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many metals have serious toxic effects when ingested by aquatic organisms, and the process of bioaccumulation intensifies this problem. A better understanding of bioaccumulation trends of anthropogenically introduced metals in freshwater food webs is necessary for the development of effective management strategies to protect aquatic organisms, as well as organisms (including humans) that consume top-predator fish in these food webs. Various fish species representing different trophic levels of a pelagic food chain were sampled from Lake Champlain (VT/NY). Atomic absorption spectrometry (AAS) was used to determine levels of chromium, copper, cobalt, cadmium, lead, zinc, nickel, rubidium, cesium and potassium in the fish samples. Metal concentrations for chromium, cobalt, nickel, cesium, cadmium (<5.0 ppm) and lead (<10.0 ppm) were found to be all below detection limits. Carbon and nitrogen isotopic ratios were analyzed to determine the trophic relationship of each fish species. Stable isotope and AAS metal data were used in tandem to produce linear regressions for each metal against trophic level to assess biomagnification. Both potassium and zinc showed no biomagnification because they are homeostatically regulated essential trace metals. Copper was under the detection limits for all fish species with the exception of the sea lamprey; but showed a significant biodiminution among the invertebrates and lamprey. Rubidium, a rarely studied metal, was shown to increase with trophic level in a marginally significant linear relationship suggesting biomagnification is possible where more trophic levels are sampled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antifreeze proteins (AFPs) protect marine teleosts from freezing in icy seawater by binding to nascent ice crystals and preventing their growth. It has been suggested that the gene dosage for AFPs in fish reflects the degree of exposure to harsh winter climates. The starry flounder, _Platichthys stellatus_, has been chosen to examine this relationship because it inhabits a range of the Pacific coast from California to the Arctic. This flatfish is presumed to produce type I AFP, which is an alanine-rich, amphipathic alpha-helix. Genomic DNA from four starry flounder was Southern blotted and probed with a cDNA of a winter flounder liver AFP. The hybridization signal was consistent with a gene family of approximately 40 copies. Blots of DNA from other starry flounder indicate that California fish have far fewer gene copies whereas Alaska fish have far more. This analysis is complicated by the fact that there are three different type I AFP isoforms. The first is expressed in the liver and secreted into circulation, the second is a larger hyperactive dimer also thought to be expressed in the liver, and the third is expressed in peripheral tissues. To evaluate the contribution of these latter two isoforms to the overall gene signal on Southern blots, hybridization probes for the three isoforms were isolated from starry flounder DNA by genomic cloning. Two clones revealed linkage of genes for different isoforms, and this was confirmed by genomic Southern blotting, where hybridization patterns indicated that the majority of genes were present in tandem repeats. The sequence and diversity of all three isoforms was sampled in the starry flounder genome by PCR. All coding sequences derived for the skin and liver isoforms were consistent with the proposed structure-function relationships for this AFP, where the flat hydrophobic side of the helix is conserved for ice binding. There was greater sequence diversity in the skin and hyperactive isoforms than in the liver isoform, suggesting that the latter evolved recently from one of the other two. The genomic PCR primers are currently being used to sample isoform diversity in related right-eyed flounders to test this hypothesis.