2 resultados para OVARIAN HORMONES

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Low levels of methylation within repetitive DNA elements, such as long interspersed nuclear element-1 (LINE-1) and Alu repeats, are believed to epigenetically predispose an individual to cancer and other diseases. The extent to which lifestyle factors affect the degree of DNA methylation within these genomic regions has yet to be fully understood. Adiposity and sex hormones are established risk factors for certain types of cancer and other illnesses, particularly amongst postmenopausal women. The aim of the current investigation is to assess the impact of adiposity and sex hormones on LINE-1 and Alu methylation in healthy postmenopausal women. METHODS: A cross-sectional study was conducted using baseline data from an ancillary study of the Alberta Physical Activity and Breast Cancer Prevention (ALPHA) Trial. Current adiposity was measured using a dual-energy x-ray absorptiometry (DXA) scan, computed tomography (CT) scan, and balance beam scale. Historical weights were self-reported in a questionnaire. Current endogenous sex hormone concentrations were measured in fasting blood serum. Estimated lifetime number of menstrual cycles was used as a proxy for cumulative exposure to ovarian sex hormones. Repetitive element methylation was quantified in white blood cells using a pyrosequencing assay. Linear regression was used to model the relations of interest while adjusting for important confounders. RESULTS: Adiposity and serum estrogen concentrations were positively related to LINE-1 methylation but were not associated with Alu methylation. Cumulative ovarian sex hormone exposure had a “U-shaped” relation with LINE-1 regardless of folate intake and a negative relation with Alu methylation amongst low folate consumers. Androgens were not associated with repetitive element DNA methylation in this population. CONCLUSION: Adiposity and estrogens appear to play a role in maintaining high levels of repetitive element DNA methylation in healthy postmenopausal women. LINE-1 methylation may be a mechanism whereby estrogen exposure protects against cardiovascular and neurodegenerative illnesses. These results add to the growing body of literature showing how the epigenome is shaped by our lifestyle choices. Future prospective studies assessing the relation between levels of repetitive element DNA methylation in healthy individuals and subsequent disease risk are needed to better understand the clinical significance of these results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-grade serous ovarian cancer (HGSC) is the most prevalent epithelial ovarian cancer characterized by late detection, metastasis and resistance to chemotherapy. Previous studies on the tumour immune microenvironment in HGSC identified STAT1 and CXCL10 as the most differentially expressed genes between treatment naïve chemotherapy resistant and sensitive tumours. Interferon-induced STAT1 is a transcription factor, which induces many genes including tumour suppressor genes and those involved in recruitment of immune cells to the tumour immune microenvironment (TME), including CXCL10. CXCL10 is a chemokine that recruits tumour infiltrating lymphocytes (TILs) and exhibits angiostatic function. The current study was performed to determine the effects of differential STAT1 and CXCL10 expression on HGSC disease progression and TME. STAT1 expression and intratumoural CD8+ T cells were evaluated as prognostic and predictive biomarkers via immunohistochemistry on 734 HGSC tumours accrued from the Terry Fox Research Institute-Canadian Ovarian Experimental Unified Resource. The combined effect of STAT1 expression and CD8+ TIL density was confirmed as prognostic and predictive companion biomarkers in the second independent biomarker validation study. Significant positive correlation between STAT1 expression and intratumoral CD8+ TIL density was observed. The effects of enforced CXCL10 expression on HGSC tumour growth, vasculature and immune tumour microenvironment were studied in the ID8 mouse ovarian cancer cell engraftment in immunocompetent C57BL/6 mice. Significant decrease in tumour progression in mice injected with ID8 CXCL10 overexpressing cells compared to mice injected with ID8 vector control cells was observed. Multiplexed cytokine analysis of ascites showed differential expression of IL-6, VEGF and CXCL9 between the two groups. Endothelial cell marker staining showed differences in tumour vasculature between the two groups. Immune transcriptomic profiling identified distinct expression profiles in genes associated with cytokines, chemokines, interferons, T cell function and apoptosis between the two groups. These findings provide evidence that STAT1 is an independent biomarker and in combination with CD8+ TIL density could be applied as novel immune-based biomarkers in HGSC. These results provide the basis for future studies aimed at understanding mechanisms underlying differential tumour STAT1 and CXCL10 expression and its role in pre-existing tumour immunologic diversity, thus potentially contributing to biomarker guided immune modulatory therapies.