3 resultados para Lakes--Lake Crawford.

em QSpace: Queen's University - Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The roasting of gold-bearing arsenopyrite at Giant mine (Northwest Territories) between 1949 and 1999 released approximately 20,000 tonnes of toxic arsenic-bearing aerosols in the local aerial environment. Detailed examination of lake sediments, sediment porewaters, surface waters and lake hydrology sampled from three lakes of differing limnological characteristics was conducted in summer and winter conditions. Samples were analyzed for solid and dissolved elemental concentrations, speciation and mineralogy. The three lakes are located less than 5km from the mine roaster, and downwind, based on predominant wind direction. The objective of the study was to assess the controls on the mobility and fate of arsenic in these roaster-impacted subarctic lacustrine environments. Results show that the occurrence of arsenic trioxide in lake sediments coincides with the regional onset of industrial activities. The bulk of arsenic in sediments is contained in the form of secondary sulphide precipitates, with iron oxides hosting a minimal amount of arsenic near the surface-water interface. The presence of geogenic arsenic is likely contained as dilute impurities in common rock-forming minerals, and is not believed to be a significant source of arsenic to sediments, porewaters or lake waters. Furthermore, the well correlated depth-profiles of arsenic, antimony and gold in sediments may help reveal roaster impact. The soluble arsenic trioxide particles contained in sediments act as the primary source of arsenic into porewaters. Dissolved arsenic in reducing porewaters both precipitate as secondary sulphides in situ, and diffuse upwards into the overlying lake waters. Arsenic diffusion out of porewaters, combined with watercourse-driven residence time, are estimated to be the predominant mechanisms controlling arsenic concentrations in overlying lake waters. The sequestration of arsenic from porewaters as sulphide precipitates, in the study lakes, is not an effective process in keeping lake-water arsenic concentrations below guidelines for the protection of the freshwater environment and drinking water. Seasonal impacts on lake geochemistry derive from ice covering lake waters, cutting them off from of atmospheric oxygen, along with the exclusion of solutes from the ice. Such effects are limited in deep lakes but are can be an important factor controlling arsenic precipitation and mobility in ponds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recreational fisheries in North America are valued between $47.3 billion and $56.8 billion. Fisheries managers must make strategic decisions based on sound science and knowledge of population ecology, to effectively conserve populations. Competitive fishing, in the form of tournaments, has become an important part of recreational fisheries, and is common on large waterbodies including the Great Lakes. Black Bass, Micropterus spp., are top predators and among the most sought after species in competitive catch-and-release tournaments. This study investigated catch-and-release tournaments as an assessment tool through mark-recapture for Largemouth Bass (>305mm) populations in the Tri Lakes, and Bay of Quinte, part of the eastern basin of Lake Ontario. The population in the Tri Lakes (1999-2002) was estimated to be stable between 21,928-29,780, and the population in the Bay of Quinte (2012-2015) was estimated to be between 31,825-54,029 fish. Survival in the Tri Lakes varied throughout the study period, from 31%-54%; while survival in the Bay of Quinte remained stable at 63%. Differences in survival may be due to differences in fishing pressure, as 34-46% of the Largemouth Bass population on the Tri Lakes is harvested annually and only 19% of catch was attributed to tournament angling. Many biological issues still surround catch-and-release tournaments, particularly concerning displacement from initial capture sites. In the past, the majority of studies have focused on small inland lakes and coastal areas, displacing bass relatively short distances. My study displaced Largemouth and Smallmouth Bass up to 100km, and found very low rates of return; only 1 of 18 Largemouth Bass returned 15 km and 1 of 18 Smallmouth Bass returned 135 km. Both species remained near the release sites for an average of approximately 2 weeks prior to dispersing. Tournament organizers should consider the use of satellite release locations to facilitate dispersal and prevent stockpiling at the release site. Catch-and-release tournaments proved to be a valuable tool in assessing population variables and the effects of long distance displacement through the use of mark recapture and acoustic telemetry on large lake systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last several decades, human activities have resulted in environmental changes that have increased the number of stressors that can act on a single environment. In Canadian Shield lakes, two recent stressors, the invasion of Bythotrephes longimanus and calcium decline, have been documented. Widespread acidification of hundreds of North American lakes has resulted in the precipitous decline of lake water calcium concentration. Crustacean zooplankton with high calcium demands are likely to be vulnerable to calcium decline, especially <1.5 mg Ca/L, where survival and reproduction rates are reduced. These taxa are also vulnerable to predation by Bythotrephes that has been implicated in the loss of pelagic biodiversity in soft water lakes. Despite laboratory and field studies aimed at understanding the independent impact of these stressors, it is unclear how their co-occurrence will influence community response. Using a combination of data from a large regional lake survey and field experiments, I examined the individual and joint effects of Bythotrephes and calcium decline on native zooplankton community structure. Results demonstrated that much is known about Bythotrephes and our findings of reduced total zooplankton and species richness, due to the loss of Cladocera, are consistent with field surveys and other experimental studies. While we did not detect strong evidence for an effect of calcium on zooplankton using the lowest calcium concentration among invaded lakes (1.2 mg Ca/L), there is evidence that, as lake water calcium concentrations fall <1 mg Ca/L, per capita growth rates of a broad variety of taxa are expected to decline. At the regional scale, negative effects of Bythotrephes and calcium on abundances of small cladocerans and Daphnia pulicaria, respectively, were in agreement with my experimental observations. We also observed significant interactions between Bythotrephes and calcium for a broad variety of taxa. As Bythotrephes continues to spread and invade lakes that are also declining in aqueous calcium, both stressors are likely to amplify negative effects on Cladocera that appear the most vulnerable. Loss of these important zooplankton in response to both Bythotrephes and calcium decline, is likely to lower zooplankton productivity, with potential effects on phytoplankton and higher trophic levels.