5 resultados para Lakes--Lake Crawford.

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

All major geochemical cycles on the Earth’s surface are mediated by microorganisms. Our understanding of how these microbes have interacted with their environments (and vice versa) throughout Earth's history, and how they will respond to changes in the future, is primarily based on studying their activity in different environments today. The overarching questions that motivate the research presented in the two parts of this thesis -- how do microorganisms shape their environment (and vice versa)? and how can we best study microbial activity in situ? -- have arisen from the ultimate goal of being able to predict microbial activity in response to changes within their environments both past and future.

Part one focuses on work related to microbial processes in iron-rich Lake Matano and, more broadly, microbial interactions with the biogeochemical cycling of iron. Primarily, we find that the chelation of ferrous iron by organic ligands can affect the role of iron in anoxic environmental systems, enabling photomixotrophic growth of anoxygenic microorganisms with ferrous iron, as well as catalyzing the oxidation of ferrous iron by denitrification intermediates. These results imply that the ability to grow photomixotrophically on ferrous iron might be more widespread than previously assumed, and that the co-occurrence of chemical and biological processes involved in the coupled biogeochemical cycling of iron and nitrogen likely dominate organic-rich environmental systems.

Part two switches focus to in situ measurements of growth activity and comprises work related to microbial processes in the Cystic Fibrosis lung, and more broadly, the physiology of slow growth. We introduce stable isotope labeling of microbial membrane fatty acids and whole cells with heavy water as a new technique to measure microbial activity in a wide range of environments, demonstrate its application in continuous culture in the laboratory at the population and single cell level, and apply the tool to measure the in situ activity of the opportunistic pathogen Staphylococcus aureus within the environment of expectorated mucus from cystic fibrosis patients. We find that the average in situ growth rates of S. aureus fall into a range of generation times between ~12 hours and ~4 days, with substantial heterogeneity at the single-cell level. These data illustrate the use of heavy water as a universal environmental tracer for microbial activity, and highlight the crucial importance of studying the physiology of slow growth in representative laboratory systems in order to understand the role of these microorganisms in their native environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glaciers are often assumed to deform only at slow (i.e., glacial) rates. However, with the advent of high rate geodetic observations of ice motion, many of the intricacies of glacial deformation on hourly and daily timescales have been observed and quantified. This thesis explores two such short timescale processes: the tidal perturbation of ice stream motion and the catastrophic drainage of supraglacial meltwater lakes. Our investigation into the transmission length-scale of a tidal load represents the first study to explore the daily tidal influence on ice stream motion using three-dimensional models. Our results demonstrate both that the implicit assumptions made in the standard two-dimensional flow-line models are inherently incorrect for many ice streams, and that the anomalously large spatial extent of the tidal influence seen on the motion of some glaciers cannot be explained, as previously thought, through the elastic or viscoelastic transmission of tidal loads through the bulk of the ice stream. We then discuss how the phase delay between a tidal forcing and the ice stream’s displacement response can be used to constrain in situ viscoelastic properties of glacial ice. Lastly, for the problem of supraglacial lake drainage, we present a methodology for implementing linear viscoelasticity into an existing model for lake drainage. Our work finds that viscoelasticity is a second-order effect when trying to model the deformation of ice in response to a meltwater lake draining to a glacier’s bed. The research in this thesis demonstrates that the first-order understanding of the short-timescale behavior of naturally occurring ice is incomplete, and works towards improving our fundamental understanding of ice behavior over the range of hours to days.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lake Elsinore quadrangle covers about 250 square miles and includes parts of the southwest margin of the Perris Block, the Elsinore trough, the southeastern end of the Santa Ana Mountains, and the Elsinore Mountains.

The oldest rocks consist of an assemblage of metamorphics of igneous effusive and sedimentary origin, probably, for the most part, of Triassic age. They are intruded by diorite and various hypabyssal rocks, then in turn by granitic rocks, which occupy over 40 percent of the area. Following this last igneous activity of probable Lower Cretaceous age, an extended period of sedimentation started with the deposition of the marine Upper Cretaceous Chico formation and continued during the Paloecene under alternating marine and continental conditions on the margins of the blocks. A marine regression towards the north, during the Neocene, accounts for the younger Tertiary strata in the region under consideration.

Outpouring of basalts to the southeast indicates that igneous activity was resumed toward the close of the Tertiary. The fault zone, which characterizes the Elsinor trough, marks one of the major tectonic lines of southem California. It separates the upthrown and tilted block of the Santa Ana Mountains to the south from the Perris Block to the north.

Most of the faults are normal in type and nearly parallel to the general trend of the trough, or intersect each other at an acute angle. Vertical displacements generally exceed the horizontal ones and several periods of activity are recognized.

Tilting of Tertiary and older Quaternary sediments in the trough have produced broad synclinal structures which have been modified by subsequent faulting.

Five old surfaces of erosion are exposed on the highlands.

The mineral resources of the region are mainly high-grade clay deposits and mineral waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis I apply paleomagnetic techniques to paleoseismological problems. I investigate the use of secular-variation magnetostratigraphy to date prehistoric earthquakes; I identify liquefaction remanent magnetization (LRM), and I quantify coseismic deformation within a fault zone by measuring the rotation of paleomagnetic vectors.

In Chapter 2 I construct a secular-variation reference curve for southern California. For this curve I measure three new well-constrained paleomagnetic directions: two from the Pallett Creek paleoseismological site at A.D. 1397-1480 and A.D. 1465-1495, and one from Panum Crater at A.D. 1325-1365. To these three directions I add the best nine data points from the Sternberg secular-variation curve, five data points from Champion, and one point from the A.D. 1480 eruption of Mt. St. Helens. I derive the error due to the non-dipole field that is added to these data by the geographical correction to southern California. Combining these yields a secular variation curve for southern California covering the period A.D. 670 to 1910, with the best coverage in the range A.D. 1064 to 1505.

In Chapter 3 I apply this curve to a problem in southern California. Two paleoseismological sites in the Salton trough of southern California have sediments deposited by prehistoric Lake Cahuilla. At the Salt Creek site I sampled sediments from three different lakes, and at the Indio site I sampled sediments from four different lakes. Based upon the coinciding paleomagnetic directions I correlate the oldest lake sampled at Salt Creek with the oldest lake sampled at Indio. Furthermore, the penultimate lake at Indio does not appear to be present at Salt Creek. Using the secular variation curve I can assign the lakes at Salt Creek to broad age ranges of A.D. 800 to 1100, A.D. 1100 to 1300, and A.D. 1300 to 1500. This example demonstrates the large uncertainties in the secular variation curve and the need to construct curves from a limited geographical area.

Chapter 4 demonstrates that seismically induced liquefaction can cause resetting of detrital remanent magnetization and acquisition of a liquefaction remanent magnetization (LRM). I sampled three different liquefaction features, a sandbody formed in the Elsinore fault zone, diapirs from sediments of Mono Lake, and a sandblow in these same sediments. In every case the liquefaction features showed stable magnetization despite substantial physical disruption. In addition, in the case of the sandblow and the sandbody, the intensity of the natural remanent magnetization increased by up to an order of magnitude.

In Chapter 5 I apply paleomagnetics to measuring the tectonic rotations in a 52 meter long transect across the San Andreas fault zone at the Pallett Creek paleoseismological site. This site has presented a significant problem because the brittle long-term average slip-rate across the fault is significantly less than the slip-rate from other nearby sites. I find sections adjacent to the fault with tectonic rotations of up to 30°. If interpreted as block rotations, the non-brittle offset was 14.0+2.8, -2.1 meters in the last three earthquakes and 8.5+1.0, -0.9 meters in the last two. Combined with the brittle offset in these events, the last three events all had about 6 meters of total fault offset, even though the intervals between them were markedly different.

In Appendix 1 I present a detailed description of my standard sampling and demagnetization procedure.

In Appendix 2 I present a detailed discussion of the study at Panum Crater that yielded the well-constrained paleomagnetic direction for use in developing secular variation curve in Chapter 2. In addition, from sampling two distinctly different clast types in a block-and-ash flow deposit from Panum Crater, I find that this flow had a complex emplacement and cooling history. Angular, glassy "lithic" blocks were emplaced at temperatures above 600° C. Some of these had cooled nearly completely, whereas others had cooled only to 450° C, when settling in the flow rotated the blocks slightly. The partially cooled blocks then finished cooling without further settling. Highly vesicular, breadcrusted pumiceous clasts had not yet cooled to 600° C at the time of these rotations, because they show a stable, well clustered, unidirectional magnetic vector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uptake of Cu, Zn, and Cd by fresh water plankton was studied by analyzing samples of water and plankton from six lakes in southern California. Co, Pb, Mn, Fe, Na, K, Mg, Ca, Sr, Ba, and Al were also determined in the plankton samples. Special precautions were taken during sampling and analysis to avoid metal contamination.

The relation between aqueous metal concentrations and the concentrations of metals in plankton was studied by plotting aqueous and plankton metal concentrations vs time and comparing the plots. No plankton metal plot showed the same changes as its corresponding aqueous metal plot, though long-term trends were similar. Thus, passive sorption did not completely explain plankton metal uptake.

The fractions of Cu, Zn, and Cd in lake water which were associated with plankton were calculated and these fractions were less than 1% in every case.

To see whether or not plankton metal uptake could deplete aqueous metal concentrations by measurable amounts (e.g. 20%) in short periods (e.g. less than six days), three integrated rate equations were used as models of plankton metal sorption. Parameters for the equations were taken from actual field measurements. Measurable reductions in concentration within short times were predicted by all three equations when the concentration factor was greater than 10^5. All Cu concentration factors were less than 10^5.

The role of plankton was regulating metal concentrations considered in the context of a model of trace metal chemistry in lakes. The model assumes that all particles can be represented by a single solid phase and that the solid phase controls aqueous metal concentrations. A term for the rate of in situ production of particulate matter is included and primary productivity was used for this parameter. In San Vicente Reservoir, the test case, the rate of in situ production of particulate matter was of the same order of magnitude as the rate of introduction of particulate matter by the influent stream.