254 resultados para Intellectual property systems Australia
em QSpace: Queen's University - Canada
Resumo:
The commodification of natural resources and the pursuit of continuous growth has resulted in environmental degradation, depletion, and disparity in access to these life-sustaining resources, including water. Utility-based objectification and exploitation of water in some societies has brought us to the brink of crisis through an apathetic disregard for present and future generations. The ongoing depletion and degradation of the world’s water sources, coupled with a reliance on Western knowledge and the continued omission of Indigenous knowledge to manage our relationship with water has unduly burdened many, but particularly so for Indigenous communities. The goal of my thesis research is to call attention to and advance the value and validity of using both Indigenous and Western knowledge systems (also known as Two-Eyed Seeing) in water research and management to better care for water. To achieve this goal, I used a combined systematic and realist review method to identify and synthesize the peer-reviewed, integrative water literature, followed by semi-structured interviews with first authors of the exemplars from the included literature to identify the challenges and insights that researchers have experienced in conducting integrative water research. Findings suggest that these authors recognize that many previous attempts to integrate Indigenous knowledges have been tokenistic rather than meaningful, and that new methods for knowledge implementation are needed. Community-based participatory research methods, and the associated tenets of balancing power, fostering trust, and community ownership over the research process, emerged as a pathway towards the meaningful implementation of Indigenous and Western knowledge systems. Data also indicate that engagement and collaborative governance structures developed from a position of mutual respect are integral to the realization of a given project. The recommendations generated from these findings offer support for future Indigenous-led research and partnerships through the identification and examination of approaches that facilitate the meaningful implementation of Indigenous and Western knowledge systems in water research and management. Asking Western science questions and seeking Indigenous science solutions does not appear to be working; instead, the co-design of research projects and asking questions directed at the problem rather than the solution better lends itself to the strengths of Indigenous science.
Resumo:
Over the past few years, logging has evolved from from simple printf statements to more complex and widely used logging libraries. Today logging information is used to support various development activities such as fixing bugs, analyzing the results of load tests, monitoring performance and transferring knowledge. Recent research has examined how to improve logging practices by informing developers what to log and where to log. Furthermore, the strong dependence on logging has led to the development of logging libraries that have reduced the intricacies of logging, which has resulted in an abundance of log information. Two recent challenges have emerged as modern software systems start to treat logging as a core aspect of their software. In particular, 1) infrastructural challenges have emerged due to the plethora of logging libraries available today and 2) processing challenges have emerged due to the large number of log processing tools that ingest logs and produce useful information from them. In this thesis, we explore these two challenges. We first explore the infrastructural challenges that arise due to the plethora of logging libraries available today. As systems evolve, their logging infrastructure has to evolve (commonly this is done by migrating to new logging libraries). We explore logging library migrations within Apache Software Foundation (ASF) projects. We i find that close to 14% of the pro jects within the ASF migrate their logging libraries at least once. For processing challenges, we explore the different factors which can affect the likelihood of a logging statement changing in the future in four open source systems namely ActiveMQ, Camel, Cloudstack and Liferay. Such changes are likely to negatively impact the log processing tools that must be updated to accommodate such changes. We find that 20%-45% of the logging statements within the four systems are changed at least once. We construct random forest classifiers and Cox models to determine the likelihood of both just-introduced and long-lived logging statements changing in the future. We find that file ownership, developer experience, log density and SLOC are important factors in determining the stability of logging statements.
Resumo:
Ring opening metathesis polymerization (ROMP) is a variant of olefin metathesis used to polymerize strained cyclic olefins. Ruthenium-based Grubbs’ catalysts are widely used in ROMP to produce industrially important products. While highly efficient in organic solvents such as dichloromethane and toluene, these hydrophobic catalysts are not typically applied in aqueous systems. With the advancements in emulsion and miniemulsion polymerization, it is promising to conduct ROMP in an aqueous dispersed phase to generate well-defined latex nanoparticles while improving heat transfer and reducing the use of volatile organic solvents (VOCs). Herein I report the efforts made using a PEGylated ruthenium alkylidene as the catalyst to initiate ROMP in an oil-in-water miniemulsion. 1H NMR revealed that the synthesized PEGylated catalyst was stable and reactive in water. Using 1,5-cyclooctadiene (COD) as monomer, we showed the highly efficient catalyst yielded colloidally stable polymer latexes with ~ 100% conversion at room temperature. Kinetic studies demonstrated first-order kinetics with good livingness as confirmed by the shift of gel permeation chromatography (GPC) traces. Depending on the surfactants used, the particle sizes ranged from 100 to 300 nm with monomodal distributions. The more strained cyclic olefin norbornene (NB) could also be efficiently polymerized with a PEGylated ruthenium alkylidene in miniemulsion to full conversion and with minimal coagulum formation.
Resumo:
Recreational fisheries in North America are valued between $47.3 billion and $56.8 billion. Fisheries managers must make strategic decisions based on sound science and knowledge of population ecology, to effectively conserve populations. Competitive fishing, in the form of tournaments, has become an important part of recreational fisheries, and is common on large waterbodies including the Great Lakes. Black Bass, Micropterus spp., are top predators and among the most sought after species in competitive catch-and-release tournaments. This study investigated catch-and-release tournaments as an assessment tool through mark-recapture for Largemouth Bass (>305mm) populations in the Tri Lakes, and Bay of Quinte, part of the eastern basin of Lake Ontario. The population in the Tri Lakes (1999-2002) was estimated to be stable between 21,928-29,780, and the population in the Bay of Quinte (2012-2015) was estimated to be between 31,825-54,029 fish. Survival in the Tri Lakes varied throughout the study period, from 31%-54%; while survival in the Bay of Quinte remained stable at 63%. Differences in survival may be due to differences in fishing pressure, as 34-46% of the Largemouth Bass population on the Tri Lakes is harvested annually and only 19% of catch was attributed to tournament angling. Many biological issues still surround catch-and-release tournaments, particularly concerning displacement from initial capture sites. In the past, the majority of studies have focused on small inland lakes and coastal areas, displacing bass relatively short distances. My study displaced Largemouth and Smallmouth Bass up to 100km, and found very low rates of return; only 1 of 18 Largemouth Bass returned 15 km and 1 of 18 Smallmouth Bass returned 135 km. Both species remained near the release sites for an average of approximately 2 weeks prior to dispersing. Tournament organizers should consider the use of satellite release locations to facilitate dispersal and prevent stockpiling at the release site. Catch-and-release tournaments proved to be a valuable tool in assessing population variables and the effects of long distance displacement through the use of mark recapture and acoustic telemetry on large lake systems.
Resumo:
The southeastern coast of South Australia contains a spectacular and world-renown suite of Quaternary calcareous aeolianites. This study is focused on the provenance of components in the Holocene sector of this carbonate breach-dune succession. Research was carried out along seven transects from ~30 meters water depth offshore across the beach and into the dunes. Offshore sediments were acquired via grab sampling and SCUBA. Results indicate that dunes of the southern Lacepede and Otway coasts in particular are mostly composed of modern invertebrate and calcareous algal allochems. The most numerous grains are from molluscs, benthic foraminifera, coralline algae, echinoids, and bryozoans. These particles originate in carbonate factories such as macroalgal forests, rocky reefs, seagrass meadows, and low-relief seafloor rockgrounds. The incorporation of carbonate skeletons into coastal dunes, however, depends on a combination of; 1) the infauna within intertidal and nearshore environments, 2) the physical characteristics of different allochems and their ability to withstand fragmentation and abrasion, 3) the wave and swell climate, and 4) the nature of aeolian transport. Most aeolian dune sediment is derived from nearshore and intertidal carbonate factories. This is particularly well illustrated by the abundance of robust infaunal bivalves that inhabit the nearshore sands and virtual absence of bryozoans that are common as sediment particles in water depths > 10mwd. Thus, the calcareous aeolianites in this cool-water carbonate region are not a reflection of the offshore marine shelf factories, but more a product of shallow nearshore-intertidal biomes.
Resumo:
This thesis investigates the design of optimal tax systems in dynamic environments. The first essay characterizes the optimal tax system where wages depend on stochastic shocks and work experience. In addition to redistributive and efficiency motives, the taxation of inexperienced workers depends on a second-best requirement that encourages work experience, a social insurance motive and incentive effects. Calibrations using U.S. data yield higher expected optimal marginal income tax rates for experienced workers for most of the inexperienced workers. They confirm that the average marginal income tax rate increases (decreases) with age when shocks and work experience are substitutes (complements). Finally, more variability in experienced workers' earnings prospects leads to increasing tax rates since income taxation acts as a social insurance mechanism. In the second essay, the properties of an optimal tax system are investigated in a dynamic private information economy where labor market frictions create unemployment that destroys workers' human capital. A two-skill type model is considered where wages and employment are endogenous. I find that the optimal tax system distorts the first-period wages of all workers below their efficient levels which leads to more employment. The standard no-distortion-at-the-top result no longer holds due to the combination of private information and the destruction of human capital. I show this result analytically under the Maximin social welfare function and confirm it numerically for a general social welfare function. I also investigate the use of a training program and job creation subsidies. The final essay analyzes the optimal linear tax system when there is a population of individuals whose perceptions of savings are linked to their disposable income and their family background through family cultural transmission. Aside from the standard equity/efficiency trade-off, taxes account for the endogeneity of perceptions through two channels. First, taxing labor decreases income, which decreases the perception of savings through time. Second, taxation on savings corrects for the misperceptions of workers and thus savings and labor decisions. Numerical simulations confirm that behavioral issues push labor income taxes upward to finance saving subsidies. Government transfers to individuals are also decreased to finance those same subsidies.
Resumo:
Thermally driven liquid-desiccant air-conditioners (LDAC) are a proven but still developing technology. LDACs can use a solar thermal system to reduce the operational cost and environmental impact of the system by reducing the amount of fuel (e.g. natural gas, propane, etc.) used to drive the system. LDACs also have a key benefit of being able to store energy in the form of concentrated desiccant storage. TRNSYS simulations were used to evaluate several different methods of improving the thermal and electrical coefficients of performance (COPt and COPe) and the solar fraction (SF) of a LDAC. The study analyzed a typical June to August cooling season in Toronto, Ontario. Utilizing properly sized, high-efficiency pumps increased the COPe to 3.67, an improvement of 55%. A new design, featuring a heat recovery ventilator on the scavenging-airstream and an energy recovery ventilator on the process-airstream, increased the COPt to 0.58, an improvement of 32%. This also improved the SF slightly to 54%, an increase of 8%. A new TRNSYS TYPE was created to model a stratified desiccant storage tank. Different volumes of desiccant were tested with a range of solar array system sizes. The largest storage tank coupled with the largest solar thermal array showed improvements of 64% in SF, increasing the value to 82%. The COPe was also improved by 17% and the COPt by 9%. When combining the heat recovery systems and the desiccant storage systems, the simulation results showed a 78% increase in COPe and 30% increase in COPt. A 77% improvement in SF and a 17% increase in total cooling rate were also predicted by the simulation. The total thermal energy consumed was 10% lower and the electrical consumption was 34% lower. The amount of non-renewable energy needed from the natural gas boiler was 77% lower. Comparisons were also made between LDACs and vapour-compression (VC) systems. Dependent on set-up, LDACs provided higher latent cooling rates and reduced electrical power consumption. Negatively, a thermal input was required for the LDAC systems but not for the VC systems.
Resumo:
Navigation devices used to be bulky and expensive and were not widely commercialized for personal use. Nowadays, all useful electronic devices are turning into being handheld so that they can be conveniently used anytime and anywhere. One can claim that almost any mobile phone, used today, has quite strong navigational capabilities that can efficiently work anywhere in the globe. No matter where you are, you can easily know your exact location and make your way smoothly to wherever you would like to go. This couldn’t have been made possible without the existence of efficient and small microwave circuits responsible for the transmission and reception of high quality navigation signals. This thesis is mainly concerned with the design of novel highly miniaturized and efficient filtering components working in the Global Navigational Satellite Systems (GNSS) frequency band to be integrated within an efficient Radio Frequency (RF) front-end module (FEM). A System-on-Package (SoP) integration technique is adopted for the design of all the components in this thesis. Two novel miniaturized filters are designed, where one of them is a wideband filter targeting the complete GNSS band with a fractional bandwidth of almost 50% at a center frequency of 1.385 GHz. This filter utilizes a direct inductive coupling topology to achieve the required wide band performance. It also has very good out-of-band rejection and low IL. Whereas the other dual band filter will only cover the lower and upper GNSS bands with a rejection notch in between the two bands. It has very good inter band rejection. The well-known “divide and conquer” design methodology was applied for the design of this filter to help save valuable design and optimization time. Moreover, the performance of two commercially available ultra-Low Noise Amplifiers (LNAs) is studied. The complete RF FEM showed promising preliminary performance in terms of noise figure, gain and bandwidth, where it out performed other commercial front-ends in these three aspects. All the designed circuits are fabricated and tested. The measured results are found to be in good agreements with the simulations.
Resumo:
Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.
Resumo:
The neurotransmitter dopamine (DA) plays an essential role in reward-related incentive learning, whereby neutral stimuli gain the ability to elicit approach and other responses. In an incentive learning paradigm called conditioned activity, animals receive a stimulant drug in a specific environment over the course of several days. When then placed in that environment drug-free, they generally display a conditioned hyperactive response. Modulating DA transmission at different time points during the paradigm has been shown to disrupt or enhance conditioning effects. For instance, blocking DA D2 receptors before sessions generally impedes the acquisition of conditioned activity. To date, no studies have examined the role of D2 receptors in the consolidation phase of conditioned activity; this phase occurs immediately after acquisition and involves the stabilization of memories for long-term storage. To investigate this possible role, I trained Wistar rats (N = 108) in the conditioned activity paradigm produced by amphetamine (2.0 mg/kg, intraperitoneally) to examine the effects of the D2 antagonist haloperidol (doses 0.10, 0.25, 0.50, 0.75, 1.0, & 2.0 mg/kg, intraperitoneally) administered 5 min after conditioning sessions. Two positive control groups received haloperidol 1 h before conditioning sessions (doses 1.0 mg/kg and 2.0 mg/kg). The results revealed that post-session haloperidol at all doses tested did not disrupt the consolidation of conditioned activity, while pre-session haloperidol at 2.0 mg/kg prevented acquisition, with the 1.0 mg/kg group trending toward a block. Additionally, post-session haloperidol did not diminish activity during conditioning days, unlike pre-session haloperidol. One possible reason for these findings is that the consolidation phase may have begun earlier than when haloperidol was administered, since the conditioned activity paradigm uses longer learning sessions than those generally used in consolidation studies. Future studies may test if conditioned activity can be achieved with shorter sessions; if so, haloperidol would then be re-tested at an earlier time point. D2 receptor second messenger systems may also be investigated in consolidation. Since drug-related incentive stimuli can evoke cravings in those with drug addiction, a better understanding of the mechanisms of incentive learning may lead to the development of solutions for these individuals.
Resumo:
At the Merrick Landfill, located outside of North Bay (Ontario, CA), an investigation into the potential for an environmental impact to the Little Sturgeon River as a result of landfill leachate discharge was undertaken using toxicity testing using 96 hour acute lethality on Oncorhynchus mykiss (Rainbow Trout). Landfill leachate may present a risk to receiving environments as it is comprised of an array of chemicals including organics, ammonia, and metals. Testing was conducted in three phases, firstly testing was completed on site throughout an existing natural attenuation zone where the presence of several groundwater seeps down gradient of the site had been identified to determine the effectiveness of the existing leachate control features at reducing the environmental risks. These tests indicated that the existing capture strategies were largely effective at reducing toxicity risks to the receiving environment. Testing was also completed on two pilot-scale hybrid-passive treatment systems to determine their effectiveness for leachate treatment. Summer performance of a constructed gravel wetland system was also shown to be effective at reducing the toxicity of the landfill leachate at the site. Lastly in order to support evaluation of leachate treatment requirements, a toxicity identification evaluation (TIE) was performed to determine the principle cause of toxicity within the leachate. Based on water chemistry analyses of samples collected at various locations at the site, the TIE identified ammonia toxicity as the primary source of toxicity in the leachate, with a secondary focus on metal toxicity.
Resumo:
The ability to capture human motion allows researchers to evaluate an individual’s gait. Gait can be measured in different ways, from camera-based systems to Magnetic and Inertial Measurement Units (MIMU). The former uses cameras to track positional information of photo-reflective markers, while the latter uses accelerometers, gyroscopes, and magnetometers to measure segment orientation. Both systems can be used to measure joint kinematics, but the results vary because of their differences in anatomical calibrations. The objective of this thesis was to study potential solutions for reducing joint angle discrepancies between MIMU and camera-based systems. The first study worked to correct the anatomical frame differences between MIMU and camera-based systems via the joint angles of both systems. This study looked at full lower body correction versus correcting a single joint. Single joint correction showed slightly better alignment of both systems, but does not take into account that body segments are generally affected by more than one joint. The second study explores the possibility of anatomical landmarking using a single camera and a pointer apparatus. Results showed anatomical landmark position could be determined using a single camera, as the anatomical landmarks found from this study and a camera-based system showed similar results. This thesis worked on providing a novel way for obtaining anatomical landmarks with a single point-and-shoot camera, as well aligning anatomical frames between MIMUs and camera-based systems using joint angles.
Resumo:
The main goal of this thesis is to show the versatility of glancing angle deposition (GLAD) thin films in applications. This research is first focused on studying the effect of select deposition variables in GLAD thin films and secondly, to demonstrate the flexibility of GLAD films to be incorporated in two different applications: (1) as a reflective coating in low-level concentration photovoltaic systems, and (2) as an anode structure in dye-sensitized solar cells (DSSC). A particular type of microstructure composed of tilted micro-columns of titanium is fabricated by GLAD. The microstructures form elongated and fan-like tilted micro-columns that demonstrate anisotropic scattering. The thin films texture changes from fiber texture to tilted fiber texture by increasing the vapor incidence angle. At very large deposition angles, biaxial texture forms. The morphology of the thin films deposited under extreme shadowing condition and at high temperature (below recrystallization zone) shows a porous and inclined micro-columnar morphology, resulting from the dominance of shadowing over adatom surface diffusion. The anisotropic scattering behavior of the tilted Ti thin film coatings is quantified by bidirectional reflectance distribution function (BRDF) measurements and is found to be consistent with reflectance from the microstructure acting as an array of inclined micro-mirrors that redirect the incident light in a non-specular reflection. A silver-coating of the surface of the tilted-Ti micro-columns is performed to enhance the total reflectance of the Ti-thin films while keeping the anisotropic scattering behavior. By using such coating is as a booster reflector in a laboratory-scale low-level concentration photovoltaic system, the short-circuit current of the reference silicon solar cell by 25%. Finally, based on the scattering properties of the tilted microcolumnar microstructure, its scattering effect is studied as a part of titanium dioxide microstructure for the anode in DSSCs. GLAD-fabricated TiO2 microstructures for the anode in a DSSC, consisting of vertical micro-columns, and combined vertical topped with tilted micro-columns are compared. The solar cell with the two-part microstructure shows the highest monochromatic incident photon to current efficiency with 20% improvement compared to the vertical microstructure, and the efficiency of the cell increases from 1.5% to 2% due to employing the scattering layer.
Resumo:
With the increasing attention towards the role of information systems (IS) as a vehicle to address environmental issues, IS researchers and practitioners have strived to leverage advanced Green IS innovations to persuade people to engage in environmentally responsible practices and support pro-environmental initiatives. Yet, existing research reveals that the persuasion effects of Green IS designs remain equivocal. In particular, many design characteristics advocated in Green IS research can produce bi-directional changes in IS users’ attitudes and behaviours. To address this issue, this thesis drew upon the circumplex model of social values (S.H. Schwartz, 1992) to explain when and how online persuasion designs come to affect people’s judgements on resource conservation and environmental protection. Three sets of working propositions and specific hypotheses were developed. Specifically, this research suggests that the use of an IS application can elicit different value primes and draw IS users’ attentions to different motivational functions of engaging in suggested behavioural changes. It is expected that matching online persuasion appeals with IS users’ personal value priorities can increase users’ acceptance of online behavioural suggestions. Second, it is hypothesized that the persuasion effect tends to be weakened, as the system users become aware of the valuematching design in a given IS application. Third, it is proposed that different value primes presented in an IS application can result in different unintended effects on IS users’ global pro-environmental attitudes and motivations. The hypotheses were tested in the two pilot studies and two full-scale online experiments. The study findings generally support the main predictions of the hypotheses. On the one hand, this thesis providesiii empirical evidence that IS design for online persuasion can be instrumental in influencing IS users’ judgements on a range of resource conservation practices. On the other hand, this work explains why the effectiveness of IS-enabled online persuasion attempts needs to be measured not only in terms of the intended changes in a target behavioural domain but also in terms of unintended changes in people’s general environmental orientations. Findings in this research may bring a different perspective on understanding and assessing the influence of Green IS applications on IS users’ judgements and behaviou
Resumo:
Background: Over the past decade, annual heath exams have been de-emphasized for the general population but emphasized for adults with intellectual and developmental disabilities (IDD). The purpose of this project was to determine if there has been an increase in the uptake of the health exam among adults with IDD in Ontario, to what extent, and the effect on the quality of preventive care provided. Methods: Using administrative health data, the proportion of adults (18-64 years old) with IDD who received a health exam (long appointment, general assessment, and “true” health exam), a high value on the primary care quality composite score (PCQS), and a health exam or high PCQS each year was compared to the proportion in a propensity score matched sample of the general population. Negative binomial and segmented negative binomial regression controlling for age and sex were used to determine the relative risk of having a health exam/high PCQS/health exam or PCQS over time. Results: Pre joinpoint, the long appointment and general assessment health exam definitions saw a decrease and the “true” health exam saw an increase in the likelihood of adults having a health exam. Post joinpoint, all health exam definitions saw a decrease in the likelihood of adults having a health exam. Pre joinpoint, all PCQS measures (high PCQS, long appointment or high PCQS, “true” health exam or high PCQS) saw an increase in the likelihood for adults to achieve a high PCQS or high PCQS/have a health exam. Post joinpoint, all PCQS measures saw a decrease in the likelihood for adults to achieve a high PCQS or high PCQS/have a health exam. Achieving a high PCQS was strongly associated with having a health exam regardless of health exam definition or IDD status. Conclusions: Despite the publication of guidelines, only a small proportion of adults with IDD are receiving health exams. This indicates that the publication of guidelines alone was not sufficient to change practice. More targeted measures, such as the implementation of an IDD-specific health exam fee code, should be considered to increase the uptake of the health exam among adults with IDD.