2 resultados para Cone-Beam Computed Tomography.

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Low levels of methylation within repetitive DNA elements, such as long interspersed nuclear element-1 (LINE-1) and Alu repeats, are believed to epigenetically predispose an individual to cancer and other diseases. The extent to which lifestyle factors affect the degree of DNA methylation within these genomic regions has yet to be fully understood. Adiposity and sex hormones are established risk factors for certain types of cancer and other illnesses, particularly amongst postmenopausal women. The aim of the current investigation is to assess the impact of adiposity and sex hormones on LINE-1 and Alu methylation in healthy postmenopausal women. METHODS: A cross-sectional study was conducted using baseline data from an ancillary study of the Alberta Physical Activity and Breast Cancer Prevention (ALPHA) Trial. Current adiposity was measured using a dual-energy x-ray absorptiometry (DXA) scan, computed tomography (CT) scan, and balance beam scale. Historical weights were self-reported in a questionnaire. Current endogenous sex hormone concentrations were measured in fasting blood serum. Estimated lifetime number of menstrual cycles was used as a proxy for cumulative exposure to ovarian sex hormones. Repetitive element methylation was quantified in white blood cells using a pyrosequencing assay. Linear regression was used to model the relations of interest while adjusting for important confounders. RESULTS: Adiposity and serum estrogen concentrations were positively related to LINE-1 methylation but were not associated with Alu methylation. Cumulative ovarian sex hormone exposure had a “U-shaped” relation with LINE-1 regardless of folate intake and a negative relation with Alu methylation amongst low folate consumers. Androgens were not associated with repetitive element DNA methylation in this population. CONCLUSION: Adiposity and estrogens appear to play a role in maintaining high levels of repetitive element DNA methylation in healthy postmenopausal women. LINE-1 methylation may be a mechanism whereby estrogen exposure protects against cardiovascular and neurodegenerative illnesses. These results add to the growing body of literature showing how the epigenome is shaped by our lifestyle choices. Future prospective studies assessing the relation between levels of repetitive element DNA methylation in healthy individuals and subsequent disease risk are needed to better understand the clinical significance of these results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In radiotherapy planning, computed tomography (CT) images are used to quantify the electron density of tissues and provide spatial anatomical information. Treatment planning systems use these data to calculate the expected spatial distribution of absorbed dose in a patient. CT imaging is complicated by the presence of metal implants which cause increased image noise, produce artifacts throughout the image and can exceed the available range of CT number values within the implant, perturbing electron density estimates in the image. Furthermore, current dose calculation algorithms do not accurately model radiation transport at metal-tissue interfaces. Combined, these issues adversely affect the accuracy of dose calculations in the vicinity of metal implants. As the number of patients with orthopedic and dental implants grows, so does the need to deliver safe and effective radiotherapy treatments in the presence of implants. The Medical Physics group at the Cancer Centre of Southeastern Ontario and Queen's University has developed a Cobalt-60 CT system that is relatively insensitive to metal artifacts due to the high energy, nearly monoenergetic Cobalt-60 photon beam. Kilovoltage CT (kVCT) images, including images corrected using a commercial metal artifact reduction tool, were compared to Cobalt-60 CT images throughout the treatment planning process, from initial imaging through to dose calculation. An effective metal artifact reduction algorithm was also implemented for the Cobalt-60 CT system. Electron density maps derived from the same kVCT and Cobalt-60 CT images indicated the impact of image artifacts on estimates of photon attenuation for treatment planning applications. Measurements showed that truncation of CT number data in kVCT images produced significant mischaracterization of the electron density of metals. Dose measurements downstream of metal inserts in a water phantom were compared to dose data calculated using CT images from kVCT and Cobalt-60 systems with and without artifact correction. The superior accuracy of electron density data derived from Cobalt-60 images compared to kVCT images produced calculated dose with far better agreement with measured results. These results indicated that dose calculation errors from metal image artifacts are primarily due to misrepresentation of electron density within metals rather than artifacts surrounding the implants.