2 resultados para Engineering geology.

em Portal de Revistas Científicas Complutenses - Espanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Pico de Navas landslide was a large-magnitude rotational movement, affecting 50x106m3 of hard to soft rocks. The objectives of this study were: (1) to characterize the landslide in terms of geology, geomorphological features and geotechnical parameters; and (2) to obtain an adequate geomechanical model to comprehensively explain its rupture, considering topographic, hydro-geological and geomechanical conditions. The rupture surface crossed, from top to bottom: (a) more than 200 m of limestone and clay units of the Upper Cretaceous, affected by faults; and (b) the Albian unit of Utrillas facies composed of silty sand with clay (Kaolinite) of the Lower Cretaceous. This sand played an important role in the basal failure of the slide due to the influence of fine particles (silt and clay), which comprised on average more than 70% of the sand, and the high content presence of kaolinite (>40%) in some beds. Its geotechnical parameters are: unit weight (δ) = 19-23 KN/m3; friction angle (φ) = 13º-38º and cohesion (c) = 10-48 KN/m2. Its microstructure consists of accumulations of kaolinite crystals stuck to terrigenous grains, making clayey peds. We hypothesize that the presence of these aggregates was the internal cause of fluidification of this layer once wet. Besides the faulted structure of the massif, other conditioning factors of the movement were: the large load of the upper limestone layers; high water table levels; high water pore pressure; and the loss of strength due to wet conditions. The 3D simulation of the stability conditions concurs with our hypothesis. The landslide occurred in the Recent or Middle Holocene, certainly before at least 500 BC and possibly during a wet climate period. Today, it appears to be inactive. This study helps to understand the frequent slope instabilities all along the Iberian Range when facies Utrillas is present.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several landforms found in the fold-and-thrust belt area of Central Precordillera, Pre-Andes of Argentina, which were often associated with tectonic efforts, are in fact related to non-tectonic processes or gravitational superficial structures. These second-order structures, interpreted as gravitational collapse structures, have developed in the western flank of sierras de La Dehesa and Talacasto. These include rock-slides, rock falls, wrinkle folds, slip sheets and flaps, among others; which together constitute a monoclinal fold dipping between 30º and 60º to the west. Gravity collapse structures are parallel to the regional strike of the Sierra de la Dehesa and are placed in Ordovician limestones and dolomites. Their sloping towards the west, the presence of bed planes, fractures and joints; and the lithology (limestone interbedded with incompetent argillaceous banks) would have favored their occurrence. Movement of the detached structures has been controlled by lithology characteristics, as well as by bedding and joints. Detachment and initial transport of gravity collapse structures and rockslides in the western flank of the Sierra de la Dehesa were tightly controlled by three structural elements: 1) sliding surfaces developed on parallel bedded strata when dipping >30° in the slope direction; 2) Joint’s sets constitute lateral and transverse traction cracks which release extensional stresses and 3) Discontinuities fragmenting sliding surfaces.  Some other factors that could be characterized as local (lithology, structure and topography) and as regional (high seismic activity and possibly wetter conditions during the postglacial period) were determining in favoring the steady loss of the western mountain side in the easternmost foothills of Central Precordillera.