7 resultados para Test data generation

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel techniques have been developed for increasing the value of cloud-affected sequences of Advanced Very High Resolution Radiometer (AVHRR) sea-surface temperature (SST) data and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean colour data for visualising dynamic physical and biological oceanic processes such as fronts, eddies and blooms. The proposed composite front map approach is to combine the location, strength and persistence of all fronts observed over several days into a single map, which allows intuitive interpretation of mesoscale structures. This method achieves a synoptic view without blurring dynamic features, an inherent problem with conventional time-averaging compositing methods. Objective validation confirms a significant improvement in feature visibility on composite maps compared to individual front maps. A further novel aspect is the automated detection of ocean colour fronts, correctly locating 96% of chlorophyll fronts in a test data set. A sizeable data set of 13,000 AVHRR and 1200 SeaWiFS scenes automatically processed using this technique is applied to the study of dynamic processes off the Iberian Peninsula such as mesoscale eddy generation, and many additional applications are identified. Front map animations provide a unique insight into the evolution of upwelling and eddies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seasonal changes in altimeter data are derived for the North Atlantic Ocean. Altimeter data are then used to examine annually propagating structure along 26 degree N. By averaging the altimeter data into monthly values or by Fourier analysis, a positive anomaly can be followed from 17 degree W to similar to 50 degree W along similar to 26 degree N. The methods give a westward travel speed of 1 degree of longitude a month and a half-life of one year for the average decaying structure. At similar to 50 degree W 26 degree N, the average structure is about 2.8 years old with an elevation signal of similar to 1 cm, having gravelled similar to 3300 km westward. The mean positive anomaly results from the formation of anticyclonic eddies which are generally formed annually south of the Canary Islands by late summer and which then travel westward near 26 degree N. Individual eddy structure along 26 degree N is examined and related to in situ measurements and anomalies in the annual seasonal concentration cycle of SeaWiFS chlorophyll-a.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noise is one of the main factors degrading the quality of original multichannel remote sensing data and its presence influences classification efficiency, object detection, etc. Thus, pre-filtering is often used to remove noise and improve the solving of final tasks of multichannel remote sensing. Recent studies indicate that a classical model of additive noise is not adequate enough for images formed by modern multichannel sensors operating in visible and infrared bands. However, this fact is often ignored by researchers designing noise removal methods and algorithms. Because of this, we focus on the classification of multichannel remote sensing images in the case of signal-dependent noise present in component images. Three approaches to filtering of multichannel images for the considered noise model are analysed, all based on discrete cosine transform in blocks. The study is carried out not only in terms of conventional efficiency metrics used in filtering (MSE) but also in terms of multichannel data classification accuracy (probability of correct classification, confusion matrix). The proposed classification system combines the pre-processing stage where a DCT-based filter processes the blocks of the multichannel remote sensing image and the classification stage. Two modern classifiers are employed, radial basis function neural network and support vector machines. Simulations are carried out for three-channel image of Landsat TM sensor. Different cases of learning are considered: using noise-free samples of the test multichannel image, the noisy multichannel image and the pre-filtered one. It is shown that the use of the pre-filtered image for training produces better classification in comparison to the case of learning for the noisy image. It is demonstrated that the best results for both groups of quantitative criteria are provided if a proposed 3D discrete cosine transform filter equipped by variance stabilizing transform is applied. The classification results obtained for data pre-filtered in different ways are in agreement for both considered classifiers. Comparison of classifier performance is carried out as well. The radial basis neural network classifier is less sensitive to noise in original images, but after pre-filtering the performance of both classifiers is approximately the same.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phytoplankton colour index (PCI) of the Continuous Plankton Recorder (CPR) survey is an in situ measure of ocean colour, which is considered a proxy of the phytoplankton biomass. PCI has been extensively used to describe the major spatiotemporal patterns of phytoplankton in the North Atlantic Ocean and North Sea since 1931. Regardless of its wide application, the lack of an adequate evaluation to test the PCI's quantitative nature is an important limitation. To address this concern, a field trial over the main production season has been undertaken to assess the numerical values assigned by previous investigations for each category of the greenness of the PCI. CPRs were towed across the English Channel from Roscoff to Plymouth consecutively for each of 8 months producing 76 standard CPR samples, each representing 10 nautical miles of tow. The results of this experiment test and update the PCI methodology, and confirm the validity of this long-term in situ ocean colour data set. In addition, using a 60-year time series of the PCI of the western English Channel, a comparison is made between the previous and the current revised experimental calculations of PCI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. A first step in the analysis of complex movement data often involves discretisation of the path into a series of step-lengths and turns, for example in the analysis of specialised random walks, such as Lévy flights. However, the identification of turning points, and therefore step-lengths, in a tortuous path is dependent on ad-hoc parameter choices. Consequently, studies testing for movement patterns in these data, such as Lévy flights, have generated debate. However, studies focusing on one-dimensional (1D) data, as in the vertical displacements of marine pelagic predators, where turning points can be identified unambiguously have provided strong support for Lévy flight movement patterns. 2. Here, we investigate how step-length distributions in 3D movement patterns would be interpreted by tags recording in 1D (i.e. depth) and demonstrate the dimensional symmetry previously shown mathematically for Lévy-flight movements. We test the veracity of this symmetry by simulating several measurement errors common in empirical datasets and find Lévy patterns and exponents to be robust to low-quality movement data. 3. We then consider exponential and composite Brownian random walks and show that these also project into 1D with sufficient symmetry to be clearly identifiable as such. 4. By extending the symmetry paradigm, we propose a new methodology for step-length identification in 2D or 3D movement data. The methodology is successfully demonstrated in a re-analysis of wandering albatross Global Positioning System (GPS) location data previously analysed using a complex methodology to determine bird-landing locations as turning points in a Lévy walk. For this high-resolution GPS data, we show that there is strong evidence for albatross foraging patterns approximated by truncated Lévy flights spanning over 3·5 orders of magnitude. 5. Our simple methodology and freely available software can be used with any 2D or 3D movement data at any scale or resolution and are robust to common empirical measurement errors. The method should find wide applicability in the field of movement ecology spanning the study of motile cells to humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shade plots, simple visual representations of abundance matrices from multivariate species assemblage studies, are shown to be an effective aid in choosing an overall transformation (or other pre-treatment) of quantitative data for long-term use, striking an appropriate balance between dominant and less abundant taxa in ensuing resemblance-based multivariate analyses. Though the exposition is entirely general and applicable to all community studies, detailed illustrations of the comparative power and interpretative possibilities of shade plots are given in the case of two estuarine assemblage studies in south-western Australia: (a) macrobenthos in the upper Swan Estuary over a two-year period covering a highly significant precipitation event for the Perth area; and (b) a wide-scale spatial study of the nearshore fish fauna from five divergent estuaries. The utility of transformations of intermediate severity is again demonstrated and, with greater novelty, the potential importance seen of further mild transformation of all data after differential down-weighting (dispersion weighting) of spatially clumped' or schooled' species. Among the new techniques utilized is a two-way form of the RELATE test, which demonstrates linking of assemblage structure (fish) to continuous environmental variables (water quality), having removed a categorical factor (estuary differences). Re-orderings of sample and species axes in the associated shade plots are seen to provide transparent explanations at the species level for such continuous multivariate patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zooplankton play an important role in our oceans, in biogeochemical cycling and providing a food source for commercially important fish larvae. However, difficulties in correctly identifying zooplankton hinder our understanding of their roles in marine ecosystem functioning, and can prevent detection of long term changes in their community structure. The advent of massively parallel next generation sequencing technology allows DNA sequence data to be recovered directly from whole community samples. Here we assess the ability of such sequencing to quantify richness and diversity of a mixed zooplankton assemblage from a productive time series site in the Western English Channel. Methodology/Principle Findings Plankton net hauls (200 µm) were taken at the Western Channel Observatory station L4 in September 2010 and January 2011. These samples were analysed by microscopy and metagenetic analysis of the 18S nuclear small subunit ribosomal RNA gene using the 454 pyrosequencing platform. Following quality control a total of 419,041 sequences were obtained for all samples. The sequences clustered into 205 operational taxonomic units using a 97% similarity cut-off. Allocation of taxonomy by comparison with the National Centre for Biotechnology Information database identified 135 OTUs to species level, 11 to genus level and 1 to order, <2.5% of sequences were classified as unknowns. By comparison a skilled microscopic analyst was able to routinely enumerate only 58 taxonomic groups. Conclusions Metagenetics reveals a previously hidden taxonomic richness, especially for Copepoda and hard-to-identify meroplankton such as Bivalvia, Gastropoda and Polychaeta. It also reveals rare species and parasites. We conclude that Next Generation Sequencing of 18S amplicons is a powerful tool for elucidating the true diversity and species richness of zooplankton communities. While this approach allows for broad diversity assessments of plankton it may become increasingly attractive in future if sequence reference libraries of accurately identified individuals are better populated.