9 resultados para Test data generation
em CaltechTHESIS
Resumo:
Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches.
A fundamental question that motivates the modeling of foams is ‘how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?’ A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,“Analysis of Uniaxial Compression of Vertically Aligned Carbon Nanotubes,” J. Mech.Phys. Solids, 59, pp. 2227–2237, Erratum 60, 1753–1756 (2012)], the property space exploration was advanced to three types of simple mechanical tests: 1) uniaxial compression, 2) uniaxial tension, and 3) nanoindentation with a conical and a flat-punch tip. The simulations attempt to explain some of the salient features in experimental data, like
1) The initial linear elastic response.
2) One or more nonlinear instabilities, yielding, and hardening.
The model-inherent relationships between the material properties and the overall stress-strain behavior were validated against the available experimental data. The material properties include the gradient in stiffness along the height, plastic and elastic compressibility, and hardening. Each of these tests was evaluated in terms of their efficiency in extracting material properties. The uniaxial simulation results proved to be a combination of structural and material influences. Out of all deformation paths, flat-punch indentation proved to be superior since it is the most sensitive in capturing the material properties.
Resumo:
This thesis aims at a simple one-parameter macroscopic model of distributed damage and fracture of polymers that is amenable to a straightforward and efficient numerical implementation. The failure model is motivated by post-mortem fractographic observations of void nucleation, growth and coalescence in polyurea stretched to failure, and accounts for the specific fracture energy per unit area attendant to rupture of the material.
Furthermore, it is shown that the macroscopic model can be rigorously derived, in the sense of optimal scaling, from a micromechanical model of chain elasticity and failure regularized by means of fractional strain-gradient elasticity. Optimal scaling laws that supply a link between the single parameter of the macroscopic model, namely the critical energy-release rate of the material, and micromechanical parameters pertaining to the elasticity and strength of the polymer chains, and to the strain-gradient elasticity regularization, are derived. Based on optimal scaling laws, it is shown how the critical energy-release rate of specific materials can be determined from test data. In addition, the scope and fidelity of the model is demonstrated by means of an example of application, namely Taylor-impact experiments of polyurea rods. Hereby, optimal transportation meshfree approximation schemes using maximum-entropy interpolation functions are employed.
Finally, a different crazing model using full derivatives of the deformation gradient and a core cut-off is presented, along with a numerical non-local regularization model. The numerical model takes into account higher-order deformation gradients in a finite element framework. It is shown how the introduction of non-locality into the model stabilizes the effect of strain localization to small volumes in materials undergoing softening. From an investigation of craze formation in the limit of large deformations, convergence studies verifying scaling properties of both local- and non-local energy contributions are presented.
Resumo:
The theories of relativity and quantum mechanics, the two most important physics discoveries of the 20th century, not only revolutionized our understanding of the nature of space-time and the way matter exists and interacts, but also became the building blocks of what we currently know as modern physics. My thesis studies both subjects in great depths --- this intersection takes place in gravitational-wave physics.
Gravitational waves are "ripples of space-time", long predicted by general relativity. Although indirect evidence of gravitational waves has been discovered from observations of binary pulsars, direct detection of these waves is still actively being pursued. An international array of laser interferometer gravitational-wave detectors has been constructed in the past decade, and a first generation of these detectors has taken several years of data without a discovery. At this moment, these detectors are being upgraded into second-generation configurations, which will have ten times better sensitivity. Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed continuously by photons. The sensitivity of such a quantum measurement can often be limited by the Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed as evolving through a sequence of nearly pure quantum states.
The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in the middle of the detection frequency band. We identified the two elastic loss angles, clarified the different components of the coating Brownian noise, and obtained their cross spectral densities.
The second part of this thesis (Chapters 3-7) concerns formulating experimental concepts and analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic objects - as well as developing theoretical tools for analyzing quantum measurement processes. In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a single photon strongly influences the quantum state of a mechanical object. We also explain how to engineer the mechanical oscillator's quantum state by modifying the single photon's wave function.
In Chapters 4-5, we build theoretical tools for analyzing the so-called "non-Markovian" quantum measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a memory) while at the same time being under continuous quantum measurement (by the probe field). This aims at providing a general framework for analyzing a large class of non-Markovian measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath (i.e.,whether and to what extent the bath remembers information about the plant) by perturbing the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent measurement of a mechanical oscillator's zero-point fluctuations, revealing nontrivial correlation between the measurement device's sensing noise and the quantum rack-action noise.
Chapter 7 describes a model in which gravity is classical and matter motions are quantized, elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring the center-of-mass motion of a macroscopic object.
The most promising gravitational waves for direct detection are those emitted from highly energetic astrophysical processes, sometimes involving black holes - a type of object predicted by general relativity whose properties depend highly on the strong-field regime of the theory. Although black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary objects, detecting gravitational waves emitted by systems containing black holes will offer a much more direct way of observing black holes, providing unprecedented details of space-time geometry in the black-holes' strong-field region.
The third part of this thesis (Chapters 8-11) studies black-hole physics in connection with gravitational-wave detection.
Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian formalism in which the low-mass object and the metric perturbations of the background spacetime are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of the weakly-damped QNMs, with relative error O(1/L^2), and connect these frequencies to geometrical features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11 we obtain an analytical approximate for the scalar Green function in Kerr spacetime.
Resumo:
Seismic reflection methods have been extensively used to probe the Earth's crust and suggest the nature of its formative processes. The analysis of multi-offset seismic reflection data extends the technique from a reconnaissance method to a powerful scientific tool that can be applied to test specific hypotheses. The treatment of reflections at multiple offsets becomes tractable if the assumptions of high-frequency rays are valid for the problem being considered. Their validity can be tested by applying the methods of analysis to full wave synthetics.
Three studies illustrate the application of these principles to investigations of the nature of the crust in southern California. A survey shot by the COCORP consortium in 1977 across the San Andreas fault near Parkfield revealed events in the record sections whose arrival time decreased with offset. The reflectors generating these events are imaged using a multi-offset three-dimensional Kirchhoff migration. Migrations of full wave acoustic synthetics having the same limitations in geometric coverage as the field survey demonstrate the utility of this back projection process for imaging. The migrated depth sections show the locations of the major physical boundaries of the San Andreas fault zone. The zone is bounded on the southwest by a near-vertical fault juxtaposing a Tertiary sedimentary section against uplifted crystalline rocks of the fault zone block. On the northeast, the fault zone is bounded by a fault dipping into the San Andreas, which includes slices of serpentinized ultramafics, intersecting it at 3 km depth. These interpretations can be made despite complications introduced by lateral heterogeneities.
In 1985 the Calcrust consortium designed a survey in the eastern Mojave desert to image structures in both the shallow and the deep crust. Preliminary field experiments showed that the major geophysical acquisition problem to be solved was the poor penetration of seismic energy through a low-velocity surface layer. Its effects could be mitigated through special acquisition and processing techniques. Data obtained from industry showed that quality data could be obtained from areas having a deeper, older sedimentary cover, causing a re-definition of the geologic objectives. Long offset stationary arrays were designed to provide reversed, wider angle coverage of the deep crust over parts of the survey. The preliminary field tests and constant monitoring of data quality and parameter adjustment allowed 108 km of excellent crustal data to be obtained.
This dataset, along with two others from the central and western Mojave, was used to constrain rock properties and the physical condition of the crust. The multi-offset analysis proceeded in two steps. First, an increase in reflection peak frequency with offset is indicative of a thinly layered reflector. The thickness and velocity contrast of the layering can be calculated from the spectral dispersion, to discriminate between structures resulting from broad scale or local effects. Second, the amplitude effects at different offsets of P-P scattering from weak elastic heterogeneities indicate whether the signs of the changes in density, rigidity, and Lame's parameter at the reflector agree or are opposed. The effects of reflection generation and propagation in a heterogeneous, anisotropic crust were contained by the design of the experiment and the simplicity of the observed amplitude and frequency trends. Multi-offset spectra and amplitude trend stacks of the three Mojave Desert datasets suggest that the most reflective structures in the middle crust are strong Poisson's ratio (σ) contrasts. Porous zones or the juxtaposition of units of mutually distant origin are indicated. Heterogeneities in σ increase towards the top of a basal crustal zone at ~22 km depth. The transition to the basal zone and to the mantle include increases in σ. The Moho itself includes ~400 m layering having a velocity higher than that of the uppermost mantle. The Moho maintains the same configuration across the Mojave despite 5 km of crustal thinning near the Colorado River. This indicates that Miocene extension there either thinned just the basal zone, or that the basal zone developed regionally after the extensional event.
Resumo:
The epidemic of HIV/AIDS in the United States is constantly changing and evolving, starting from patient zero to now an estimated 650,000 to 900,000 Americans infected. The nature and course of HIV changed dramatically with the introduction of antiretrovirals. This discourse examines many different facets of HIV from the beginning where there wasn't any treatment for HIV until the present era of highly active antiretroviral therapy (HAART). By utilizing statistical analysis of clinical data, this paper examines where we were, where we are and projections as to where treatment of HIV/AIDS is headed.
Chapter Two describes the datasets that were used for the analyses. The primary database utilized was collected by myself from an outpatient HIV clinic. The data included dates from 1984 until the present. The second database was from the Multicenter AIDS Cohort Study (MACS) public dataset. The data from the MACS cover the time between 1984 and October 1992. Comparisons are made between both datasets.
Chapter Three discusses where we were. Before the first anti-HIV drugs (called antiretrovirals) were approved, there was no treatment to slow the progression of HIV. The first generation of antiretrovirals, reverse transcriptase inhibitors such as AZT (zidovudine), DDI (didanosine), DDC (zalcitabine), and D4T (stavudine) provided the first treatment for HIV. The first clinical trials showed that these antiretrovirals had a significant impact on increasing patient survival. The trials also showed that patients on these drugs had increased CD4+ T cell counts. Chapter Three examines the distributions of CD4 T cell counts. The results show that the estimated distributions of CD4 T cell counts are distinctly non-Gaussian. Thus distributional assumptions regarding CD4 T cell counts must be taken, into account when performing analyses with this marker. The results also show the estimated CD4 T cell distributions for each disease stage: asymptomatic, symptomatic and AIDS are non-Gaussian. Interestingly, the distribution of CD4 T cell counts for the asymptomatic period is significantly below that of the CD4 T cell distribution for the uninfected population suggesting that even in patients with no outward symptoms of HIV infection, there exists high levels of immunosuppression.
Chapter Four discusses where we are at present. HIV quickly grew resistant to reverse transcriptase inhibitors which were given sequentially as mono or dual therapy. As resistance grew, the positive effects of the reverse transcriptase inhibitors on CD4 T cell counts and survival dissipated. As the old era faded a new era characterized by a new class of drugs and new technology changed the way that we treat HIV-infected patients. Viral load assays were able to quantify the levels of HIV RNA in the blood. By quantifying the viral load, one now had a faster, more direct way to test antiretroviral regimen efficacy. Protease inhibitors, which attacked a different region of HIV than reverse transcriptase inhibitors, when used in combination with other antiretroviral agents were found to dramatically and significantly reduce the HIV RNA levels in the blood. Patients also experienced significant increases in CD4 T cell counts. For the first time in the epidemic, there was hope. It was hypothesized that with HAART, viral levels could be kept so low that the immune system as measured by CD4 T cell counts would be able to recover. If these viral levels could be kept low enough, it would be possible for the immune system to eradicate the virus. The hypothesis of immune reconstitution, that is bringing CD4 T cell counts up to levels seen in uninfected patients, is tested in Chapter Four. It was found that for these patients, there was not enough of a CD4 T cell increase to be consistent with the hypothesis of immune reconstitution.
In Chapter Five, the effectiveness of long-term HAART is analyzed. Survival analysis was conducted on 213 patients on long-term HAART. The primary endpoint was presence of an AIDS defining illness. A high level of clinical failure, or progression to an endpoint, was found.
Chapter Six yields insights into where we are going. New technology such as viral genotypic testing, that looks at the genetic structure of HIV and determines where mutations have occurred, has shown that HIV is capable of producing resistance mutations that confer multiple drug resistance. This section looks at resistance issues and speculates, ceterus parabis, where the state of HIV is going. This section first addresses viral genotype and the correlates of viral load and disease progression. A second analysis looks at patients who have failed their primary attempts at HAART and subsequent salvage therapy. It was found that salvage regimens, efforts to control viral replication through the administration of different combinations of antiretrovirals, were not effective in 90 percent of the population in controlling viral replication. Thus, primary attempts at therapy offer the best change of viral suppression and delay of disease progression. Documentation of transmission of drug-resistant virus suggests that the public health crisis of HIV is far from over. Drug resistant HIV can sustain the epidemic and hamper our efforts to treat HIV infection. The data presented suggest that the decrease in the morbidity and mortality due to HIV/AIDS is transient. Deaths due to HIV will increase and public health officials must prepare for this eventuality unless new treatments become available. These results also underscore the importance of the vaccine effort.
The final chapter looks at the economic issues related to HIV. The direct and indirect costs of treating HIV/AIDS are very high. For the first time in the epidemic, there exists treatment that can actually slow disease progression. The direct costs for HAART are estimated. It is estimated that the direct lifetime costs for treating each HIV infected patient with HAART is between $353,000 to $598,000 depending on how long HAART prolongs life. If one looks at the incremental cost per year of life saved it is only $101,000. This is comparable with the incremental costs per year of life saved from coronary artery bypass surgery.
Policy makers need to be aware that although HAART can delay disease progression, it is not a cure and HIV is not over. The results presented here suggest that the decreases in the morbidity and mortality due to HIV are transient. Policymakers need to be prepared for the eventual increase in AIDS incidence and mortality. Costs associated with HIV/AIDS are also projected to increase. The cost savings seen recently have been from the dramatic decreases in the incidence of AIDS defining opportunistic infections. As patients who have been on HAART the longest start to progress to AIDS, policymakers and insurance companies will find that the cost of treating HIV/AIDS will increase.
Resumo:
Arid and semiarid landscapes comprise nearly a third of the Earth's total land surface. These areas are coming under increasing land use pressures. Despite their low productivity these lands are not barren. Rather, they consist of fragile ecosystems vulnerable to anthropogenic disturbance.
The purpose of this thesis is threefold: (I) to develop and test a process model of wind-driven desertification, (II) to evaluate next-generation process-relevant remote monitoring strategies for use in arid and semiarid regions, and (III) to identify elements for effective management of the world's drylands.
In developing the process model of wind-driven desertification in arid and semiarid lands, field, remote sensing, and modeling observations from a degraded Mojave Desert shrubland are used. This model focuses on aeolian removal and transport of dust, sand, and litter as the primary mechanisms of degradation: killing plants by burial and abrasion, interrupting natural processes of nutrient accumulation, and allowing the loss of soil resources by abiotic transport. This model is tested in field sampling experiments at two sites and is extended by Fourier Transform and geostatistical analysis of high-resolution imagery from one site.
Next, the use of hyperspectral remote sensing data is evaluated as a substantive input to dryland remote monitoring strategies. In particular, the efficacy of spectral mixture analysis (SMA) in discriminating vegetation and soil types and detennining vegetation cover is investigated. The results indicate that hyperspectral data may be less useful than often thought in determining vegetation parameters. Its usefulness in determining soil parameters, however, may be leveraged by developing simple multispectral classification tools that can be used to monitor desertification.
Finally, the elements required for effective monitoring and management of arid and semiarid lands are discussed. Several large-scale multi-site field experiments are proposed to clarify the role of wind as a landscape and degradation process in dry lands. The role of remote sensing in monitoring the world's drylands is discussed in terms of optimal remote sensing platform characteristics and surface phenomena which may be monitored in order to identify areas at risk of desertification. A desertification indicator is proposed that unifies consideration of environmental and human variables.
Resumo:
These studies explore how, where, and when representations of variables critical to decision-making are represented in the brain. In order to produce a decision, humans must first determine the relevant stimuli, actions, and possible outcomes before applying an algorithm that will select an action from those available. When choosing amongst alternative stimuli, the framework of value-based decision-making proposes that values are assigned to the stimuli and that these values are then compared in an abstract “value space” in order to produce a decision. Despite much progress, in particular regarding the pinpointing of ventromedial prefrontal cortex (vmPFC) as a region that encodes the value, many basic questions remain. In Chapter 2, I show that distributed BOLD signaling in vmPFC represents the value of stimuli under consideration in a manner that is independent of the type of stimulus it is. Thus the open question of whether value is represented in abstraction, a key tenet of value-based decision-making, is confirmed. However, I also show that stimulus-dependent value representations are also present in the brain during decision-making and suggest a potential neural pathway for stimulus-to-value transformations that integrates these two results.
More broadly speaking, there is both neural and behavioral evidence that two distinct control systems are at work during action selection. These two systems compose the “goal-directed system”, which selects actions based on an internal model of the environment, and the “habitual” system, which generates responses based on antecedent stimuli only. Computational characterizations of these two systems imply that they have different informational requirements in terms of input stimuli, actions, and possible outcomes. Associative learning theory predicts that the habitual system should utilize stimulus and action information only, while goal-directed behavior requires that outcomes as well as stimuli and actions be processed. In Chapter 3, I test whether areas of the brain hypothesized to be involved in habitual versus goal-directed control represent the corresponding theorized variables.
The question of whether one or both of these neural systems drives Pavlovian conditioning is less well-studied. Chapter 4 describes an experiment in which subjects were scanned while engaged in a Pavlovian task with a simple non-trivial structure. After comparing a variety of model-based and model-free learning algorithms (thought to underpin goal-directed and habitual decision-making, respectively), it was found that subjects’ reaction times were better explained by a model-based system. In addition, neural signaling of precision, a variable based on a representation of a world model, was found in the amygdala. These data indicate that the influence of model-based representations of the environment can extend even to the most basic learning processes.
Knowledge of the state of hidden variables in an environment is required for optimal inference regarding the abstract decision structure of a given environment and therefore can be crucial to decision-making in a wide range of situations. Inferring the state of an abstract variable requires the generation and manipulation of an internal representation of beliefs over the values of the hidden variable. In Chapter 5, I describe behavioral and neural results regarding the learning strategies employed by human subjects in a hierarchical state-estimation task. In particular, a comprehensive model fit and comparison process pointed to the use of "belief thresholding". This implies that subjects tended to eliminate low-probability hypotheses regarding the state of the environment from their internal model and ceased to update the corresponding variables. Thus, in concert with incremental Bayesian learning, humans explicitly manipulate their internal model of the generative process during hierarchical inference consistent with a serial hypothesis testing strategy.
Resumo:
In the first part of the thesis we explore three fundamental questions that arise naturally when we conceive a machine learning scenario where the training and test distributions can differ. Contrary to conventional wisdom, we show that in fact mismatched training and test distribution can yield better out-of-sample performance. This optimal performance can be obtained by training with the dual distribution. This optimal training distribution depends on the test distribution set by the problem, but not on the target function that we want to learn. We show how to obtain this distribution in both discrete and continuous input spaces, as well as how to approximate it in a practical scenario. Benefits of using this distribution are exemplified in both synthetic and real data sets.
In order to apply the dual distribution in the supervised learning scenario where the training data set is fixed, it is necessary to use weights to make the sample appear as if it came from the dual distribution. We explore the negative effect that weighting a sample can have. The theoretical decomposition of the use of weights regarding its effect on the out-of-sample error is easy to understand but not actionable in practice, as the quantities involved cannot be computed. Hence, we propose the Targeted Weighting algorithm that determines if, for a given set of weights, the out-of-sample performance will improve or not in a practical setting. This is necessary as the setting assumes there are no labeled points distributed according to the test distribution, only unlabeled samples.
Finally, we propose a new class of matching algorithms that can be used to match the training set to a desired distribution, such as the dual distribution (or the test distribution). These algorithms can be applied to very large datasets, and we show how they lead to improved performance in a large real dataset such as the Netflix dataset. Their computational complexity is the main reason for their advantage over previous algorithms proposed in the covariate shift literature.
In the second part of the thesis we apply Machine Learning to the problem of behavior recognition. We develop a specific behavior classifier to study fly aggression, and we develop a system that allows analyzing behavior in videos of animals, with minimal supervision. The system, which we call CUBA (Caltech Unsupervised Behavior Analysis), allows detecting movemes, actions, and stories from time series describing the position of animals in videos. The method summarizes the data, as well as it provides biologists with a mathematical tool to test new hypotheses. Other benefits of CUBA include finding classifiers for specific behaviors without the need for annotation, as well as providing means to discriminate groups of animals, for example, according to their genetic line.
Resumo:
We are at the cusp of a historic transformation of both communication system and electricity system. This creates challenges as well as opportunities for the study of networked systems. Problems of these systems typically involve a huge number of end points that require intelligent coordination in a distributed manner. In this thesis, we develop models, theories, and scalable distributed optimization and control algorithms to overcome these challenges.
This thesis focuses on two specific areas: multi-path TCP (Transmission Control Protocol) and electricity distribution system operation and control. Multi-path TCP (MP-TCP) is a TCP extension that allows a single data stream to be split across multiple paths. MP-TCP has the potential to greatly improve reliability as well as efficiency of communication devices. We propose a fluid model for a large class of MP-TCP algorithms and identify design criteria that guarantee the existence, uniqueness, and stability of system equilibrium. We clarify how algorithm parameters impact TCP-friendliness, responsiveness, and window oscillation and demonstrate an inevitable tradeoff among these properties. We discuss the implications of these properties on the behavior of existing algorithms and motivate a new algorithm Balia (balanced linked adaptation) which generalizes existing algorithms and strikes a good balance among TCP-friendliness, responsiveness, and window oscillation. We have implemented Balia in the Linux kernel. We use our prototype to compare the new proposed algorithm Balia with existing MP-TCP algorithms.
Our second focus is on designing computationally efficient algorithms for electricity distribution system operation and control. First, we develop efficient algorithms for feeder reconfiguration in distribution networks. The feeder reconfiguration problem chooses the on/off status of the switches in a distribution network in order to minimize a certain cost such as power loss. It is a mixed integer nonlinear program and hence hard to solve. We propose a heuristic algorithm that is based on the recently developed convex relaxation of the optimal power flow problem. The algorithm is efficient and can successfully computes an optimal configuration on all networks that we have tested. Moreover we prove that the algorithm solves the feeder reconfiguration problem optimally under certain conditions. We also propose a more efficient algorithm and it incurs a loss in optimality of less than 3% on the test networks.
Second, we develop efficient distributed algorithms that solve the optimal power flow (OPF) problem on distribution networks. The OPF problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. Traditionally OPF is solved in a centralized manner. With increasing penetration of volatile renewable energy resources in distribution systems, we need faster and distributed solutions for real-time feedback control. This is difficult because power flow equations are nonlinear and kirchhoff's law is global. We propose solutions for both balanced and unbalanced radial distribution networks. They exploit recent results that suggest solving for a globally optimal solution of OPF over a radial network through a second-order cone program (SOCP) or semi-definite program (SDP) relaxation. Our distributed algorithms are based on the alternating direction method of multiplier (ADMM), but unlike standard ADMM-based distributed OPF algorithms that require solving optimization subproblems using iterative methods, the proposed solutions exploit the problem structure that greatly reduce the computation time. Specifically, for balanced networks, our decomposition allows us to derive closed form solutions for these subproblems and it speeds up the convergence by 1000x times in simulations. For unbalanced networks, the subproblems reduce to either closed form solutions or eigenvalue problems whose size remains constant as the network scales up and computation time is reduced by 100x compared with iterative methods.