27 resultados para NEED FOR RECOVERY
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
Available methods for measuring the impact of ocean acidification (OA) and leakage from carbon capture and storage (CCS) on marine sedimentary pH profiles are unsuitable for replicated experimental setups. To overcome this issue, a novel optical sensor application is presented, using off-the-shelf optode technology (MOPP). The application is validated using microprofiling, during a CCS leakage experiment, where the impact and recovery from a high CO2 plume was investigated in two types of natural marine sediment. MOPP offered user-friendliness, speed of data acquisition, robustness to sediment type, and large sediment depth range. This ensemble of characteristics overcomes many of the challenges found with other pH measuring methods, in OA and CCS research. The impact varied greatly between sediment types, depending on baseline pH variability and sediment permeability. Sedimentary pH profile recovery was quick, with profiles close to control conditions 24 h after the cessation of the leak. However, variability of pH within the finer sediment was still apparent 4 days into the recovery phase. Habitat characteristics need therefore to be considered, to truly disentangle high CO2 perturbation impacts on benthic systems. Impacts on natural communities depend not only on the pH gradient caused by perturbation, but also on other processes that outlive the perturbation, adding complexity to recovery.
Resumo:
The honeycomb reef worm Sabellaria alveolata is recognised as being an important component of intertidal communities. It is a priority habitat within the UK Biodiversity Action Plan and as a biogenic reef forming species is covered by Annex 1 of the EC habitats directive. S. alveolata has a lusitanean (southern) distribution, being largely restricted to the south and west coasts of England. A broad-scale survey of S. alveolata distribution along the north-west coasts was undertaken in 2003/2004. These records were then compared with previous distribution records, mainly those collected by Cunningham in 1984. More detailed mapping was carried out at Hilbre Island at the mouth of the River Dee, due to recent reports that S. alveolata had become re-established there after a long absence.
Resumo:
1. The energy contributions of aerobic metabolism, phosphoarginine, ATP and octopine in the adductor muscles of P. magellanicus were examined during swimming and recovery. 2. A linear relationship was observed between the size of the phosphoarginine pool and the number of valve snaps. A linear increase in arginine occurred during the same period. 3. 3. Octopine was formed during the first few hours of recovery, particularly in the phasic muscle. 4. The restoration of the phosphoarginine pool appeared to be by aerobic metabolism. 5. It is concluded that the role of octopine formation is to supply energy when the tissues are anoxic and to operate at such a rate as to maintain the basal rate of energy production.