3 resultados para NEED FOR RECOVERY

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scalability of CMOS technology has driven computation into a diverse range of applications across the power consumption, performance and size spectra. Communication is a necessary adjunct to computation, and whether this is to push data from node-to-node in a high-performance computing cluster or from the receiver of wireless link to a neural stimulator in a biomedical implant, interconnect can take up a significant portion of the overall system power budget. Although a single interconnect methodology cannot address such a broad range of systems efficiently, there are a number of key design concepts that enable good interconnect design in the age of highly-scaled CMOS: an emphasis on highly-digital approaches to solving ‘analog’ problems, hardware sharing between links as well as between different functions (such as equalization and synchronization) in the same link, and adaptive hardware that changes its operating parameters to mitigate not only variation in the fabrication of the link, but also link conditions that change over time. These concepts are demonstrated through the use of two design examples, at the extremes of the power and performance spectra.

A novel all-digital clock and data recovery technique for high-performance, high density interconnect has been developed. Two independently adjustable clock phases are generated from a delay line calibrated to 2 UI. One clock phase is placed in the middle of the eye to recover the data, while the other is swept across the delay line. The samples produced by the two clocks are compared to generate eye information, which is used to determine the best phase for data recovery. The functions of the two clocks are swapped after the data phase is updated; this ping-pong action allows an infinite delay range without the use of a PLL or DLL. The scheme's generalized sampling and retiming architecture is used in a sharing technique that saves power and area in high-density interconnect. The eye information generated is also useful for tuning an adaptive equalizer, circumventing the need for dedicated adaptation hardware.

On the other side of the performance/power spectra, a capacitive proximity interconnect has been developed to support 3D integration of biomedical implants. In order to integrate more functionality while staying within size limits, implant electronics can be embedded onto a foldable parylene (‘origami’) substrate. Many of the ICs in an origami implant will be placed face-to-face with each other, so wireless proximity interconnect can be used to increase communication density while decreasing implant size, as well as facilitate a modular approach to implant design, where pre-fabricated parylene-and-IC modules are assembled together on-demand to make custom implants. Such an interconnect needs to be able to sense and adapt to changes in alignment. The proposed array uses a TDC-like structure to realize both communication and alignment sensing within the same set of plates, increasing communication density and eliminating the need to infer link quality from a separate alignment block. In order to distinguish the communication plates from the nearby ground plane, a stimulus is applied to the transmitter plate, which is rectified at the receiver to bias a delay generation block. This delay is in turn converted into a digital word using a TDC, providing alignment information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of codes, classically motivated by the need to communicate information reliably in the presence of error, has found new life in fields as diverse as network communication, distributed storage of data, and even has connections to the design of linear measurements used in compressive sensing. But in all contexts, a code typically involves exploiting the algebraic or geometric structure underlying an application. In this thesis, we examine several problems in coding theory, and try to gain some insight into the algebraic structure behind them.

The first is the study of the entropy region - the space of all possible vectors of joint entropies which can arise from a set of discrete random variables. Understanding this region is essentially the key to optimizing network codes for a given network. To this end, we employ a group-theoretic method of constructing random variables producing so-called "group-characterizable" entropy vectors, which are capable of approximating any point in the entropy region. We show how small groups can be used to produce entropy vectors which violate the Ingleton inequality, a fundamental bound on entropy vectors arising from the random variables involved in linear network codes. We discuss the suitability of these groups to design codes for networks which could potentially outperform linear coding.

The second topic we discuss is the design of frames with low coherence, closely related to finding spherical codes in which the codewords are unit vectors spaced out around the unit sphere so as to minimize the magnitudes of their mutual inner products. We show how to build frames by selecting a cleverly chosen set of representations of a finite group to produce a "group code" as described by Slepian decades ago. We go on to reinterpret our method as selecting a subset of rows of a group Fourier matrix, allowing us to study and bound our frames' coherences using character theory. We discuss the usefulness of our frames in sparse signal recovery using linear measurements.

The final problem we investigate is that of coding with constraints, most recently motivated by the demand for ways to encode large amounts of data using error-correcting codes so that any small loss can be recovered from a small set of surviving data. Most often, this involves using a systematic linear error-correcting code in which each parity symbol is constrained to be a function of some subset of the message symbols. We derive bounds on the minimum distance of such a code based on its constraints, and characterize when these bounds can be achieved using subcodes of Reed-Solomon codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The re-ignition characteristics (variation of re-ignition voltage with time after current zero) of short alternating current arcs between plane brass electrodes in air were studied by observing the average re-ignition voltages on the screen of a cathode-ray oscilloscope and controlling the rates of rise of voltage by varying the shunting capacitance and hence the natural period of oscillation of the reactors used to limit the current. The shape of these characteristics and the effects on them of varying the electrode separation, air pressure, and current strength were determined.

The results show that short arc spaces recover dielectric strength in two distinct stages. The first stage agrees in shape and magnitude with a previously developed theory that all voltage is concentrated across a partially deionized space charge layer which increases its breakdown voltage with diminishing density of ionization in the field-tree space. The second stage appears to follow complete deionization by the electric field due to displacement of the field-free region by the space charge layer, its magnitude and shape appearing to be due simply to increase in gas density due to cooling. Temperatures calculated from this second stage and ion densities determined from the first stage by means of the space charge equation and an extrapolation of the temperature curve are consistent with recent measurements of arc value by other methods. Analysis or the decrease with time of the apparent ion density shows that diffusion alone is adequate to explain the results and that volume recombination is not. The effects on the characteristics of variations in the parameters investigated are found to be in accord with previous results and with the theory if deionization mainly by diffusion be assumed.