13 resultados para Multivariate geostatistics
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
We examined how marine plankton interaction networks, as inferred by multivariate autoregressive (MAR) analysis of time-series, differ based on data collected at a fixed sampling location (L4 station in the Western English Channel) and four similar time-series prepared by averaging Continuous Plankton Recorder (CPR) datapoints in the region surrounding the fixed station. None of the plankton community structures suggested by the MAR models generated from the CPR datasets were well correlated with the MAR model for L4, but of the four CPR models, the one most closely resembling the L4 model was that for the CPR region nearest to L4. We infer that observation error and spatial variation in plankton community dynamics influenced the model performance for the CPR datasets. A modified MAR framework in which observation error and spatial variation are explicitly incorporated could allow the analysis to better handle the diverse time-series data collected in marine environments.
Resumo:
Shade plots, simple visual representations of abundance matrices from multivariate species assemblage studies, are shown to be an effective aid in choosing an overall transformation (or other pre-treatment) of quantitative data for long-term use, striking an appropriate balance between dominant and less abundant taxa in ensuing resemblance-based multivariate analyses. Though the exposition is entirely general and applicable to all community studies, detailed illustrations of the comparative power and interpretative possibilities of shade plots are given in the case of two estuarine assemblage studies in south-western Australia: (a) macrobenthos in the upper Swan Estuary over a two-year period covering a highly significant precipitation event for the Perth area; and (b) a wide-scale spatial study of the nearshore fish fauna from five divergent estuaries. The utility of transformations of intermediate severity is again demonstrated and, with greater novelty, the potential importance seen of further mild transformation of all data after differential down-weighting (dispersion weighting) of spatially clumped' or schooled' species. Among the new techniques utilized is a two-way form of the RELATE test, which demonstrates linking of assemblage structure (fish) to continuous environmental variables (water quality), having removed a categorical factor (estuary differences). Re-orderings of sample and species axes in the associated shade plots are seen to provide transparent explanations at the species level for such continuous multivariate patterns.
Resumo:
Non-parametric multivariate analyses of complex ecological datasets are widely used. Following appropriate pre-treatment of the data inter-sample resemblances are calculated using appropriate measures. Ordination and clustering derived from these resemblances are used to visualise relationships among samples (or variables). Hierarchical agglomerative clustering with group-average (UPGMA) linkage is often the clustering method chosen. Using an example dataset of zooplankton densities from the Bristol Channel and Severn Estuary, UK, a range of existing and new clustering methods are applied and the results compared. Although the examples focus on analysis of samples, the methods may also be applied to species analysis. Dendrograms derived by hierarchical clustering are compared using cophenetic correlations, which are also used to determine optimum in flexible beta clustering. A plot of cophenetic correlation against original dissimilarities reveals that a tree may be a poor representation of the full multivariate information. UNCTREE is an unconstrained binary divisive clustering algorithm in which values of the ANOSIM R statistic are used to determine (binary) splits in the data, to form a dendrogram. A form of flat clustering, k-R clustering, uses a combination of ANOSIM R and Similarity Profiles (SIMPROF) analyses to determine the optimum value of k, the number of groups into which samples should be clustered, and the sample membership of the groups. Robust outcomes from the application of such a range of differing techniques to the same resemblance matrix, as here, result in greater confidence in the validity of a clustering approach.
Resumo:
Non-parametric multivariate analyses of complex ecological datasets are widely used. Following appropriate pre-treatment of the data inter-sample resemblances are calculated using appropriate measures. Ordination and clustering derived from these resemblances are used to visualise relationships among samples (or variables). Hierarchical agglomerative clustering with group-average (UPGMA) linkage is often the clustering method chosen. Using an example dataset of zooplankton densities from the Bristol Channel and Severn Estuary, UK, a range of existing and new clustering methods are applied and the results compared. Although the examples focus on analysis of samples, the methods may also be applied to species analysis. Dendrograms derived by hierarchical clustering are compared using cophenetic correlations, which are also used to determine optimum in flexible beta clustering. A plot of cophenetic correlation against original dissimilarities reveals that a tree may be a poor representation of the full multivariate information. UNCTREE is an unconstrained binary divisive clustering algorithm in which values of the ANOSIM R statistic are used to determine (binary) splits in the data, to form a dendrogram. A form of flat clustering, k-R clustering, uses a combination of ANOSIM R and Similarity Profiles (SIMPROF) analyses to determine the optimum value of k, the number of groups into which samples should be clustered, and the sample membership of the groups. Robust outcomes from the application of such a range of differing techniques to the same resemblance matrix, as here, result in greater confidence in the validity of a clustering approach.