13 resultados para Lesser Himalaya
em Plymouth Marine Science Electronic Archive (PlyMSEA)
Resumo:
The lesser sandeel Ammodytes marinus is a key species in the North Sea ecosystem, transferring energy from planktonic producers to top predators. Previous studies have shown a long-term decline in the size of 0-group sandeels in the western North Sea, but they were unable to pinpoint the mechanism (later hatching, slower growth or changes in size-dependent mortality) or cause. To investigate the first 2 possibilities we combined 2 independent time series of sandeel size, namely data from chick-feeding Atlantic puffins Fratercula arctica and from the Continuous Plankton Recorder (CPR), in a novel statistical model implemented using Markov Chain Monte Carlo (MCMC). The model estimated annual mean length on 1 July, as well as hatching date and growth rate for sandeels from 1973 to 2006. Mean length-at-date declined by 22% over this period, corresponding to a 60% decrease in energy content, with a sharper decline since 2002. Up to the mid-1990s, the decline was associated with a trend towards later hatching. Subsequently, hatching became earlier again, and the continued trend towards smaller size appears to have been driven by lower growth rates, particularly in the most recent years, although we could not rule out changes in size-dependent mortality. Our findings point to major changes in key aspects of sandeel life history, which we consider are most likely due to direct and indirect temperature-related changes over a range of biotic factors, including the seasonal distribution of copepods and intra- and inter-specific competition with planktivorous fish. The results have implications both for the many predators of sandeels and for age and size of maturation in this aggregation of North Sea sandeels.
Resumo:
Recent recruitment failure of lesser sandeel Ammodytes marinus, a key prey fish in the North Sea, followed by several years of low spawning stock biomass, prompted us to investigate factors influencing the recruitment of this species. We tested 2 hypotheses that relate to ecological mechanisms of recruitment regulation in lesser sandeel: (1) a positive spawning stock–recruitment relationship is decoupled in years associated with high abundances of age-1 sandeels and (2) the survival success of early larvae depends specifically on the abundance of Calanus finmarchicus and not C. helgolandicus. The findings of the present study supported both hypotheses and resulted in a multiple linear recruitment model with pronounced predictive capabilities. The model includes interactions between age-1 abundance and spawning stock biomass, plus the effect of C. finmarchicus abundance, and it explained around 65% of the inter-annual variation in recruitment in contrast to only 12% by a traditional Ricker curve. We argue that early egg production in C. finmarchicus supports the survival of larvae, and that climate-generated shifts in the Calanus species composition lead to a mismatch in timing between food availability and the early life history of lesser sandeels.
Resumo:
We investigated long-term spatial variability in a number of Harmful Algal Blooms (HABs) in the northeast Atlantic and North Sea using data from the Continuous Plankton Recorder. Over the last four decades, some dinoflagellate taxa showed pronounced variation in the south and east of the North Sea, with the most significant increases being restricted to the adjacent waters off Norway. There was also a general decrease along the eastern coast of the United Kingdom. The most prominent feature in the interannual bloom frequencies over the last four decades was the anomalously high values recorded in the late 1980s in the northern and central North Sea areas. The only mesoscale area in the northeast Atlantic to show a significant increase in bloom formation over the last decade was the Norwegian coastal region. The changing spatial patterns of HAB taxa and the frequency of bloom formation are discussed in relation to regional climate change, in particular, changes in temperature, salinity, and the North Atlantic Oscillation (NAO). Areas highly vulnerable to the effects of regional climate change on HABs are Norwegian coastal waters and the Skagerrak. Other vulnerable areas include Danish coastal waters, and to a lesser extent, the German and Dutch Bight and the northern Irish Sea. Quite apart from eutrophication, our results give a preview of what might happen to certain HAB genera under changing climatic conditions in temperate environments and their responses to variability of climate oscillations such as the NAO.
Resumo:
1. Abundant mid-trophic pelagic fish often play a central role in marine ecosystems, both as links between zooplankton and top predators and as important fishery targets. In the North Sea, the lesser sandeel occupies this position, being the main prey of many bird, mammal and fish predators and the target of a major industrial fishery. However, since 2003, sandeel landings have decreased by > 50%, and many sandeel-dependent seabirds experienced breeding failures in 2004. 2. Despite the major economic implications, current understanding of the regulation of key constituents of this ecosystem is poor. Sandeel abundance may be regulated 'bottom-up' by food abundance, often thought to be under climatic control, or 'top-down' by natural or fishery predation. We tested predictions from these two hypotheses by combining unique long-term data sets (1973–2003) on seabird breeding productivity from the Isle of May, SE Scotland, and plankton and fish larvae from the Continuous Plankton Recorder survey. We also tested whether seabird breeding productivity was more tightly linked to sandeel biomass or quality (size) of individual fish. 3. The biomass of larval sandeels increased two- to threefold over the study period and was positively associated with proxies of the abundance of their plankton prey. Breeding productivity of four seabirds bringing multiple prey items to their offspring was positively related to sandeel larval biomass with a 1-year lag, indicating dependence on 1-year-old fish, but in one species bringing individual fish it was strongly associated with the size of adult sandeels. 4. These links are consistent with bottom-up ecosystem regulation and, with evidence from previous studies, indicate how climate-driven changes in plankton communities can affect top predators and potentially human fisheries through the dynamics of key mid-trophic fish. However, the failing recruitment to adult sandeel stocks and the exceptionally low seabird breeding productivity in 2004 were not associated with low sandeel larval biomass in 2003, so other mechanisms (e.g. predation, lack of suitable food after metamorphosis) must have been important in this case. Understanding ecosystem regulation is extremely important for predicting the fate of keystone species, such as sandeels, and their predators.
Resumo:
Regenerated production (including organic nitrogen) is shown here to be important in the Ria de Vigo (Galicia, NW Iberia) in supporting both harmful algal bloom communities during the downwelling season, but also (to a lesser extent) diatom communities during stratified periods of weak to moderate upwelling. The Galician Rias, situated in the Iberian upwelling system, are regularly affected by blooms of toxic dinoflagellates, which pose serious threats to the local mussel farming industry. These tend to occur towards the end of summer, during the transition from upwelling to downwelling favourable seasons, when cold bottom shelf waters in the rias are replaced by warm surface shelf waters. Nitrate, ammonium and urea uptake rates were measured in the Ria de Vigo during a downwelling event in September 2006 and during an upwelling event in June 2007. In September the ria was well mixed, with a downwelling front observed towards the middle of the ria and relatively high nutrient concentrations (1.0-2.6 mu mol L-1 nitrate; 1.0-5.6 mu mol L-1 ammonium; 0.1-0.8 mu mol L-1 phosphate; 2.0-9.0 mu mol L-1 silicic acid) were present throughout the water column. Ammonium represented more than 80% of the nitrogenous nutrients, and the phytoplankton assemblage was dominated by dinoflagellates and small flagellates. In June the water column was stratified, with nutrient-rich, upwelled water below the thermocline and warm, nutrient-depleted water in the surface. At this time, nitrate represented more than 80% of the nitrogenous nutrients, and a mixed diatom assemblage was present. Primary phytoplankton production during both events was mainly sustained by regenerated nitrogen, with ammonium uptake rates of 0.035-0.063 mu mol N L-1 h(-1) in September and 0.078-0.188 mu mol N L-1 h(-1) in June. Although f-ratios were generally low (<0.2) in both June and September, a maximum of 0.61 was reached in June due to higher nitrate uptake (0.225 mu mol N L-1 h(-1)). Total nitrogen uptake was also higher during the upwelling event (0.153-0.366 in June and 0.053-0.096 mu mol N L-1 h(-1) in September). Nitrogen uptake kinetics demonstrated a strong preference for ammonium and urea over nitrate in June.
Resumo:
Differential phenological responses to climate among species are predicted to disrupt trophic interactions, but datasets to evaluate this are scarce. We compared phenological trends for species from 4 levels of a North Sea food web over 24 yr when sea surface temperature (SST) increased significantly. We found little consistency in phenological trends between adjacent trophic levels, no significant relationships with SST, and no significant pairwise correlations between predator and prey phenologies, suggesting that trophic mismatching is occurring. Finer resolution data on timing of peak energy demand (mid-chick-rearing) for 5 seabird species at a major North Sea colony were compared to modelled daily changes in length of 0-group (young of the year) lesser sandeels Ammodytes marinus. The date at which sandeels reached a given threshold length became significantly later during the study. Although the phenology of all the species except shags also became later, these changes were insufficient to keep pace with sandeel length, and thus mean length (and energy value) of 0-group sandeels at mid-chick-rearing showed net declines. The magnitude of declines in energy value varied among the seabirds, being more marked in species showing no phenological response (shag, 4.80 kJ) and in later breeding species feeding on larger sandeels (kittiwake, 2.46 kJ) where, due to the relationship between sandeel length and energy value being non-linear, small reductions in length result in relatively large reductions in energy. However, despite the decline in energy value of 0-group sandeels during chick-rearing, there was no evidence of any adverse effect on breeding success for any of the seabird species. Trophic mismatch appears to be prevalent within the North Sea pelagic food web, suggesting that ecosystem functioning may be disrupted.
Resumo:
Large-scale biogeographical changes in the biodiversity of a key zooplankton group (calanoid copepods) were detected in the north-eastern part of the North Atlantic Ocean and its adjacent seas over the period 1960–1999. These findings provided key empirical evidence for climate change impacts on marine ecosystems at the regional to oceanic scale. Since 1999, global temperatures have continued to rise in the region. Here, we extend the analysis to the period 1958–2005 using all calanoid copepod species assemblages (nine species assemblages based on an analysis including a total of 108 calanoid species or taxa) and show that this phenomenon has been reinforced in all regions. Our study reveals that the biodiversity of calanoid copepods are responding quickly to sea surface temperature (SST) rise by moving geographically northward at a rapid rate up to about 23.16 km yr−1. Our analysis suggests that nearly half of the increase in sea temperature in the northeast Atlantic and adjacent seas is related to global temperature rises (46.35% of the total variance of temperature) while changes in both natural modes of atmospheric and oceanic circulation explain 26.45% of the total variance of temperature. Although some SST isotherms have moved northwards by an average rate of up to 21.75 km yr−1 (e.g. the North Sea), their movement cannot fully quantify all species assemblage shifts. Furthermore, the observed rates of biogeographical movements are far greater than those observed in the terrestrial realm. Here, we discuss the processes that may explain such a discrepancy and suggest that the differences are mainly explained by the fluid nature of the pelagic domain, the life cycle of the zooplankton and the lesser anthropogenic influence (e.g. exploitation, habitat fragmentation) on these organisms. We also hypothesize that despite changes in the path and intensity of the oceanic currents that may modify quickly and greatly pelagic zooplankton species, these organisms may reflect better the current impact of climate warming on ecosystems as terrestrial organisms are likely to significantly lag the current impact of climate change.
Resumo:
Spatiotemporal variation in seabird demographic parameters is often pronounced and may be an important source of information on the state of marine ecosystems. Black-legged kittiwakes Rissa tridactyla in Britain and Ireland show strong regional structure in breeding productivity, and both temporal and spatial variation are probably related to abundance of the principal prey of breeding kittiwakes, the lesser sandeel Ammodytes marinus. Annual regional estimates of sandeel abundance do not exist, prohibiting direct tests of this hypothesis. We examined relationships between kittiwake breeding productivity and 2 potential proxies of sandeel abundance, winter sea surface temperature (SST) and abundance of Calanus copepods, within and among 6 regions in Britain and Ireland from 1986 to 2004. Means and trends in winter SST differed among regions, with higher means and less pronounced increasing trends in western (Atlantic) regions than in eastern (North Sea) regions. A negative relationship between breeding productivity and winter SST in the previous year was found within 2 regions (East Scotland and Orkney), as well as in a cross-regional analysis. Results were inconclusive for Calanus abundance, with a positive relationship in East Scotland and negative in Orkney. These results demonstrate that although a single environmental driver (SST) is related to both within- and between-region variation in a key demographic parameter, regional heterogeneity in SST trends as well as the importance of other factors may lead to highly variable responses. Understanding this heterogeneity is critical for predicting long-term effects of climate change or other anthropogenic drivers on marine ecosystems.
Resumo:
Over the last few decades, global warming has accelerated both the rate and magnitude of changes observed in many functional units of the Earth System. In this context, plankton are sentinel organisms because they are sensitive to subtle levels of changes in temperature and might help in identifying the current effects of climate change on pelagic ecosystems. In this paper, we performed a comparative approach in two regions of the North Atlantic (i.e. the Northeast Atlantic and the North Sea) to explore the relationships between changes in marine plankton, the regional physico-chemical environment and large-scale hydro-climatic forcing using four key indices: the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the East Atlantic (EA) pattern and Northern Hemisphere Temperature (NHT) anomalies. Our analyses suggest that long-term changes in the states of the two ecosystems were synchronous and correlated to the same large-scale hydro-climatic variables: NHT anomalies, the AMO and to a lesser extent the EA pattern. No significant correlation was found between long-term ecosystem modifications and the state of the NAO. Our results suggest that the effect of climate on these ecosystems has mainly occurred in both regions through the modulation of the thermal regime.
Resumo:
A recent increase in sea temperature has established a new ecosystem dynamic regime in the North Sea. Climate-induced changes in decapods have played an important role. Here, we reveal a coincident increase in the abundance of swimming crabs and lesser black-backed gull colonies in the North Sea, both in time and in space. Swimming crabs are an important food source for lesser black-backed gulls during the breeding season. Inhabiting the land, but feeding mainly at sea, lesser black-backed gulls provide a link between marine and terrestrial ecosystems, since the bottom-up influence of allochthonous nutrient input from seabirds to coastal soils can structure the terrestrial food web. We, therefore, suggest that climate-driven changes in trophic interactions in the marine food web may also have ensuing ramifications for the coastal ecology of the North Sea.
Resumo:
In this paper we evaluate whether the assimilation of remotely-sensed optical data into a marine ecosystem model improves the simulation of biogeochemistry in a shelf sea. A localized Ensemble Kalman filter was used to assimilate weekly diffuse light attenuation coefficient data, Kd(443) from SeaWiFs, into an ecosystem model of the western English Channel. The spatial distributions of (unassimilated) surface chlorophyll from satellite, and a multivariate time series of eighteen biogeochemical and optical variables measured in situ at one long-term monitoring site were used to evaluate the system performance for the year 2006. Assimilation reduced the root mean square error and improved the correlation with the assimilated Kd(443) observations, for both the analysis and, to a lesser extent, the forecast estimates, when compared to the reference model simulation. Improvements in the simulation of (unassimilated) ocean colour chlorophyll were less evident, and in some parts of the Channel the simulation of this data deteriorated. The estimation errors for the (unassimilated) in situ data were reduced for most variables with some exceptions, e.g. dissolved nitrogen. Importantly, the assimilation adjusted the balance of ecosystem processes by shifting the simulated food web towards the microbial loop, thus improving the estimation of some properties, e.g. total particulate carbon. Assimilation of Kd(443) outperformed a comparative chlorophyll assimilation experiment, in both the estimation of ocean colour data and in the simulation of independent in situ data. These results are related to relatively low error in Kd(443) data, and because it is a bulk optical property of marine ecosystems. Assimilation of remotely-sensed optical properties is a promising approach to improve the simulation of biogeochemical and optical variables that are relevant for ecosystem functioning and climate change studies.