5 resultados para K most critical paths

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification, caused by increasing atmospheric concentrations of CO2 (refs 1-3), is one of the most critical anthropogenic threats to marine life. Changes in seawater carbonate chemistry have the potential to disturb calcification, acid-base regulation, blood circulation and respiration, as well as the nervous system of marine organisms, leading to long-term effects such as reduced growth rates and reproduction(4,5). In teleost fishes, early life-history stages are particularly vulnerable as they lack specialized internal pH regulatory mechanisms(6,7). So far, impacts of relevant CO2 concentrations on larval fish have been found in behaviour(8,9) and otolith size(10,11), mainly in tropical, non-commercial species. Here we show detrimental effects of ocean acidification on the development of a mass-spawning fish species of high. commercial importance. We reared Atlantic cod larvae at three levels of CO2, (1) present day, (2) end of next century and (3) an extreme, coastal upwelling scenario, in a long-term (2; months) mesocosm experiment. Exposure to CO2 resulted in severe to lethal tissue damage in many internal organs, with the degree of damage increasing with CO2 concentration. As larval survival is the bottleneck to recruitment, ocean acidification has the potential to act as an additional source of natural mortality, affecting populations of already exploited fish stocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of climate change on krill and Antarctic ecosystems, discuss implications for an ecosystem-based fisheries management approach and identify critical knowledge gaps. Sea ice decline, ocean warming and other environmental stressors act in concert to modify the abundance, distribution and life cycle of krill. Although some of these changes can have positive effects on krill, their cumulative impact is most likely negative. Recruitment, driven largely by the winter survival of larval krill, is probably the population parameter most susceptible to climate change. Predicting changes to krill populations is urgent, because they will seriously impact Antarctic ecosystems. Such predictions, however, are complicated by an intense inter-annual variability in recruitment success and krill abundance. To improve the responsiveness of the ecosystem-based management approach adopted by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), critical knowledge gaps need to be filled. In addition to a better understanding of the factors influencing recruitment, management will require a better understanding of the resilience and the genetic plasticity of krill life stages, and a quantitative understanding of under-ice and benthic habitat use. Current precautionary management measures of CCAMLR should be maintained until a better understanding of these processes has been achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manganese (Mn) is a required element for oceanic phytoplankton as it plays a critical role in photosynthesis, through its unique redox chemistry, as the active site in photosystem II, and in enzymes that act as defenses against reactive oxygen species (ROS), most notably for protection against superoxide (O2?), through the action of superoxide dismutase (SOD), and against hydrogen peroxide (H2O2) via peroxidases and catalases. The distribution and redox speciation of Mn in the ocean is also apparently controlled by reactions with ROS. Here we examine the connections between ROS and dissolved Mn species in the upper ocean using field and laboratory experimental data. Our results suggest it is unlikely that significant concentrations of Mn(III) are produced in the euphotic zone, as in the absence of evidence for the existence of strong Mn(III) ligands, Mn(II) reacts with O2? to form the short-lived transient manganous superoxide, MnO2+, which may react rapidly with other redox species in a manner similar to O2?. Experiments with the strong Mn(III) chelator, desferrioxamine B (DFB), in seawater indicated that the Mn(III) species are unlikely to form, as formation of the precursor Mn(II) complex is hindered due to the stability of the Ca complex with DFB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bacterial communities associated with healthy and diseased colonies of the cold-water gorgonian coral Eunicella verrucosa at three sites off the south-west coast of England were compared using denaturing gradient gel electrophoresis (DGGE) and clone libraries. Significant differences in community structure between healthy and diseased samples were discovered, as were differences in the level of disturbance to these communities at each site; this correlated with depth and sediment load. The majority of cloned sequences from healthy coral tissue affiliated with the Gammaproteobacteria. The stability of the bacterial community and dominance of specific genera found across visibly healthy colonies suggest the presence of a specific microbial community. Affiliations included a high proportion of Endozoicomonas sequences, which were most similar to sequences found in tropical corals. This genus has been found in a number of invertebrates and is suggested to have a role in coral health and in the metabolisation of dimethylsulfoniopropionate (DMSP) produced by zooxanthellae. However, screening of colonies for the presence of zooxanthellae produced a negative result. Diseased colonies showed a decrease in affiliated clones and an increase in clones related to potentially harmful/transient microorganisms but no increase in a particular pathogen. This study demonstrates that a better understanding of these bacterial communities, the factors that affect them and their role in coral health and disease will be of critical importance in predicting future threats to temperate gorgonian communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intensive sampling at the coastal waters of the central Red Sea during a period of thermal stratification, prior to the main seasonal bloom during winter, showed that vertical patches of prokaryotes and microplankton developed and persisted for several days within the apparently density uniform upper layer. These vertical structures were most likely the result of in situ growth and mortality (e.g., grazing) rather than physical or behavioural aggregation. Simulating a mixing event by adding nutrient-rich deep water abruptly triggered dense phytoplankton blooms in the nutrient-poor environment of the upper layer. These findings suggest that vertical structures within the mixed layer provide critical seeding stocks that can rapidly exploit nutrient influx during mixing, leading to winter bloom formation.