2 resultados para Existence of optimal controls

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient searching is crucial for timely location of food and other resources. Recent studies show diverse living animals employ a theoretically optimal scale-free random search for sparse resources known as a Lévy walk, but little is known of the origins and evolution of foraging behaviour and the search strategies of extinct organisms. Here we show using simulations of self-avoiding trace fossil trails that randomly introduced strophotaxis (U-turns) – initiated by obstructions such as ¬¬¬self-trail avoidance or innate cueing – leads to random looping patterns with clustering across increasing scales that is consistent with the presence of Lévy walks. This predicts optimal Lévy searches can emerge from simple behaviours observed in fossil trails. We then analysed fossilized trails of benthic marine organisms using a novel path analysis technique and find the first evidence of Lévy-like search strategies in extinct animals. Our results show that simple search behaviours of extinct animals in heterogeneous environments give rise to hierarchically nested Brownian walk clusters that converge to optimal Lévy patterns. Primary productivity collapse and large-scale food scarcity characterising mass extinctions evident in the fossil record may have triggered adaptation of optimal Lévy-like searches. The findings suggest Lévy-like behaviour has been employed by foragers since at least the Eocene but may have a more ancient origin, which could explain recent widespread observations of such patterns among modern taxa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present high-resolution data (∼0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north–south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial–temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales.